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Abstract— Brain microstates are defined as states with quasi-
stable scalp activity topography and have been widely studied in
literature. Whether those states are brain-specific or extend to
the body level is unknown yet. We investigate the extension
of cortical microstates to the peripheral autonomic nerve,
specifically at the brain-heart axis level as a functional state
of the central autonomic network. To achieve this, we com-
bined Electroencephalographic (EEG) and heart rate variability
(HRV) series from 36 healthy volunteers undergoing a cognitive
workload elicitation after a resting state. Our results showed
the existence of microstates at the functional brain-heart axis
with spatio-temporal and quasi-stable states that exclusively
pertained to the efferent direction from the brain to the
heart. Some of the identified microstates are specific for neural
or cardiovascular frequency bands, while others topographies
are recurrent over the EEG and HRV spectra. Furthermore,
some of the identified brain-heart microstates were associated
with specific experimental conditions, while others were non-
specific to tasks. Our findings support the hypothesis that EEG
microstates extend to the brain-heart axis level and may be
exploited in future neuroscience and clinical research.

I. INTRODUCTION

Cortical brain dynamics measured by electroencephalog-
raphy (EEG) exhibit transient quasi-stable states that are
manifested through specific scalp topographies temporally
close to the peaks of the global field potential (GFP) [1],
[2]. It is possible to consistently identify a limited amount
of prototypical microstates, repeatedly appearing in multi-
ple brain dynamics. These states have been referred to as
scalp/EEG microstates and are thought to be the building
blocks of spontaneous conscious mental processes [3].

The occurrence of microstates found its physiological
bases on the current, well-established understanding that
brain functions result from intense parallel processing in
diffused and distributed brain networks [4], [5]. Most stud-
ies investigating the relationship between microstates and
brain activity have focused on the resting state networks,
specifically the default mode network [1]. Recent research
has found links between microstate dynamics and other
functional cognitive activities [1], as well as physiological
[2] and pathological [6] conditions.
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Numerous brain regions have been linked to microstate
dynamics, including the insula, thalamus, amygdala, anterior
cingulate cortex, and others [7], [8]. Of note, these brain
regions also belong to the so-called central autonomic net-
work (CAN) [9]. CAN encompasses brain areas functionally
linked to sympathetic and parasympathetic nerves activity
and is involved in the functional brain-heart interplay (BHI)
[9]. BHI is directional, dynamic, and diffuse over the brain
and comprises autonomic-central nervous system commu-
nications through anatomical, biochemical, and electrical
links. Combined analysis of EEG and heart rate variability
(HRV) series has shown that healthy BHI variations occur
in response to various events, such as emotion perception
[10], alternating sleep stages [11], cognitive load [12], and
autonomic maneuvers [13]. Despite the aforementioned evi-
dence achieved by BHI analysis, some aspects remain to be
investigated. In particular, functional BHI has mainly been
studied at an EEGelectrode specific level, thus identifying
the functional coupling between EEG oscillations of specific
locations, and heartbeat oscillations, without considering a
nervous-system-wise level of interplay.

While brain activity is studied as interaction of embedded
networks, and presence of EEG microstates has been estab-
lished in brain regions belonging to the CAN, the existence
of microstates at the broader BHI level remains unclear. This
study hypothesizes that microstates extend to the brain-heart
domain and examines the functional connections between
the brain and heart during rest and in response to cognitive
stress. To test this hypothesis, a novel processing pipeline
was developed to estimate channel-specific and time-resolved
functional BHI and treated as BHI-GFP. If microstates ex-
tend to the brain-heart level, the BHI-GFP series should
be able to explain the overall variance of the scalp BHI
and exhibit meaningful changes in response to experimental
elicitation. Since EEG microstates are commonly considered
as “atoms of thoughts”, their extension to the body level,
would represent the definition of BHI microstates as “atoms
of interoception”.

Next, we report details on the methodology and exper-
imental dataset related to cognitive workload stress using
multiple mental arithmetic tasks (MA) [14].

II. MATERIALS AND METHODS

A schematic representation of the analysis pipeline imple-
mented in this study is depicted in figure 1.
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A. Experimental Dataset and Signal Preprocessing

The “EEG During Mental Arithmetic Tasks” dataset
[14] was selected from the Physionet.org database
(https://physionet.org/content/eegmat/1.0.0/). It includes
EEG and ECG recordings sampled at 500Hz from healthy
individuals performing mental arithmetic tasks (i.e. mentally
adding and subtracting integers). Each recording features a
180-second resting period followed by a 60-second mental
arithmetic task (MA).

Individuals with normal or corrected-to-normal visual
acuity, normal color vision, and no signs of mental or
cognitive impairment or learning disabilities were eligible to
participate in the study. Exclusion criteria included the use
of psychoactive drugs, addiction to drugs or alcohol, and any
neurological or psychiatric issues.

The experiment involved 36 volunteers, with data from 32
of them (24 female) being retained for further processing
after a visual inspection analysis was performed to identify
gross artifacts. The average age of participants was 18.125
y/o with a standard deviation of 2.01 y/o.

In this study, artifacts such as ocular, muscular, and cardiac
on EEG series were detected using a power line notch filter
at 50 Hz and a [0.5 � 45] Hz band-pass filter, followed by
independent component analysis. The preprocessing details
of the EEG signal acquisition can be found in [14]. The
power spectral density (PSD) of the EEG series was esti-
mated through the implementation of the short-time Fourier
transform, with a Hamming window of 2000 samples (2
seconds) and a 95% overlap. The PSD was then integrated
into the ↵ (8� 12 Hz) and � (12� 30 Hz) frequency bands.

For ECG analysis, the Pan-Tompkins algorithm [15] was
used to identify the R-peaks and derive HRV series. The
series were further examined for any potential artifacts using
Kubios HRV software. The HRV series were interpolated
and sampled at 4 Hz. The Smoothed Pseudo Wigner-Ville
Distribution (SPWVD) method [16] was utilized to obtain
a time-frequency representation, due to its low variance
and independent control over filtering in both temporal
and frequency domains. The obtained PSD estimation was
integrated into the low frequency (LF: [0.04�0.15 Hz]) and
high frequency (HF: [0.15� 0.4 Hz]) bands of interest.

B. Brain-Heart Interplay estimation

The synthetic data generation (SDG) model was used
to quantify the functional directional brain-heart interaction
(BHI), as described in detail in [17], [18]. The SDG model
consists of two coupled systems that generate synthetic

Fig. 1: Blocks diagram of the analysis procedure imple-
mented.

heartbeat and brain activity data. On the brain side, synthetic
EEG is generated through a combination of oscillators,
while the heart-to-brain interaction is modeled through an
exogenous term in an exogenous autoregressive model of the
first order. On the heartbeat side, a synthetic HRV series is
produced by an integral pulse frequency modulation model,
with parameters influenced by EEG activity, representing the
functional BHI.

To estimate time-varying BHI across HRV-LF and HF
bands and various EEG frequency ranges, the SDG model
was fitted to experimental EEG and HRV power spectral
density (PSD) series. The resulting BHI series have the same
time resolution as the PSD series.

C. Microstate Analysis

The standard method for identifying and extracting mi-
crostates from typical EEG activity was partially utilized
in this study, as described in detail in [1]. The MATLAB
toolbox used in this study, which is freely downloadable, is
described in [19].

In order to estimate BHI microstates, the method was
adapted for this study. Firstly, topographic maps of the
BHI-GFP, the BHI equivalent of the EEG-derived global
field potential (GFP), were constructed. As the EEG-GFP
corresponds to the spatial standard deviation [20], which
estimates the time-resolved amount of activity accounting for
the data of all EEG electrodes, the BHI-GFP corresponds to
the spatial standard deviation of BHI, which estimates the
time-resolved amount of BHI accounting for the data of all
EEG electrodes.

The BHI-GFP peaks were identified and used for segmen-
tation, and a modified k-means algorithm was used for clus-
tering. A meta-criterion based on a trade-off between various
fit measures (global explained variance, cross-validation cri-
terion, Krzanowski-Lai criterion, and dispersion) was used to
determine the number of BHI microstates, and the identified
topographies were evaluated for plausibility.

Once the microstate prototypes were selected, they were
fitted to the entire BHI series. Each BHI topographical
sample was matched to a particular microstate prototype
based on its degree of similarity. The goodness of fit was
evaluated through the global explained variance (GEV),
which measures how much of the original GFP dynamics
variance is explained by the microstate time series. To ensure
continuity, a smoothing operation with a smoothing window
of 250 ms with no overlap was eventually applied [19]. The
topographical smoothness and continuity of the extracted
prototypes are commonly used to evaluate their physiological
plausibility.

III. EXPERIMENTAL RESULTS

In this study, three BHI microstates were identified for
each combination of BHI direction and frequency band, i.e.,
Cbrainb!heartb and Cheartb!brainb , where brainb refers to
the EEG-derived ↵ or � bands and heartb stands for HRV-
derived low frequency (LF) or high frequency (HF) bands.



Fig. 2: Experimental results for EEG-derived ↵ band. The
left column indicates the direction of BHI (brain-to-heart
or heart-to-brain) and the HRV frequency band (LF and
HF) involved. The right column displays the median global
explained variance (GEV) across subjects with standard
deviation, calculated through the backfitting operation on the
microstate prototypes, shown in the central part of the figure.

As shown in Figure 2, the microstate prototypes associated
with the EEG-↵ band have been identified, along with the
related GEV. It is intriguing to note that both ↵-to-heart
microstates have a GEV greater than 70%, indicating that the
microstate analysis effectively captures the spatiotemporal
dynamics of C↵!LF and C↵!HF . On the other hand, the
GEV is less than 60% for both CLF!↵ and CHF!↵, mean-
ing that the heart-to-brain dynamics is not well explained by
the algorithm.

The topographical representation of the prototypes, as
shown in Figure 2, is informative in its own right. The
prototypes extracted from C↵!LF and C↵!HF (i.e., from
brain-to-heart direction) have a smooth and physiologically
plausible distribution, while those extracted from CLF!↵

and CHF!↵ (i.e., from heart-to-brain direction) have a less
continuous and more disturbed distribution.

Given the limited GEV and the information provided by
the topographies, the heart-to-↵ BHI microstates were not
deemed robust and no further statistical comparisons were
performed in that direction.

Experimental results for EEG-� bands are displayed in
Figure 3, which mirrors the structure of Figure 2. In line
with the results obtained from the ↵ band, the GEV for �-
to-heart microstates is greater than 70% while the GEV for
heart-to-� is less than 50% for both LF and HF HRV oscil-
lations. Additionally, prototypes extracted from C�!LF and
C�!HF exhibit a continuous and physiological distribution,
in contrast to those extracted from CLF!� and CHF!� .
These results from ↵ and � EEG components are consistent
and indicate that microstate representation does not robustly
explain heart-to-brain BHI dynamics.

Figure 4 displays the frequency of each microstate (fM ),
normalized per window’s length, for participants under two
experimental conditions. Each subpanel corresponds to a

Fig. 3: Experimental results for EEG-derived � band. The left
column shows the direction of BHI (brain-to-heart or heart-
to-brain) and HRV-frequency band (LF or HF) involved.
The right column displays the median across-subject global
explained variance (GEV) ± standard deviation, obtained
from the backfitting operation on the microstate prototypes
depicted in the center of the figure.

different EEG- or HRV- frequency band and presents results
for both resting state and mental arithmetic tasks. This figure
demonstrates the change in BHI microstate distribution with
experimental conditions. For example, in the top-left panel,
which refers to C↵!LF microstates, the second microstate
prototype experiences a significant decrease in frequency
from the resting state to mental arithmetic task, while the
third prototype, which had a minor frequency during the
resting state, increases in frequency during the mental arith-
metic task. Other changes are also detected. A �

2 test for
contingency tables, implemented on a 3⇥2 contingency table
(one for each combination of EEG- and HRV- frequency
bands), was performed to determine the significance of these
changes, and p-values were always below the significance
threshold of 0.01. The test was performed by adding the fM

of each microstate (3 rows) for all subjects, separately for
the resting state and mental arithmetic task (2 columns).

IV. DISCUSSIONS AND CONCLUSION

The aim of the present study was to explore the possibility
of extending the concept of EEG microstates to the brain-
heart axis. Based on previous research that suggests that
brain regions associated with EEG microstates belong to the
central autonomic network (CAN) [7]–[9], we hypothesized
the existence of brain-heart microstates, which could be
identified through the combination of EEG and heartbeat
dynamics analysis.

A pipeline was designed to construct a brain-heart in-
terplay (BHI) associated global field power (GFP) starting
from an electrode-wise BHI estimation using a synthetic data
generation (SDG) model [17]. The obtained BHI signal was
then analyzed using EEG microstate analysis to identify the
microstate prototypes fitted with the experimental data.

The study used experimental data related to elicited CNS
and ANS responses during mental arithmetic tasks. The



Fig. 4: Boxplots statistics showing the normalized frequency
(fM ) of each microstate per unit of window time, for
participants under two experimental conditions. Results for
C↵!LF are displayed in the top-left panel, C�!LF in the
bottom-left, C↵!HF in the top-right panel, and C�!HF

in the bottom-right panel. Each boxplot corresponds to the
microstate prototype depicted at its base and results for
resting state (RS) are on the left and mental arithmetic
task (MA) on the right. An asterisk signifies a statistically
significant (p < 0.01) difference in microstate distribution.

results revealed a clear asymmetry between the brain-to-heart
and heart-to-brain directional BHI systems, with microstate
prototypes only being identified in the brain-to-heart direc-
tion. Consequently, this study suggests that BHI microstates
exist, but only in the descending direction from the brain to
the heart. As a matter of fact, BHI is known to be a strongly
directional phenomenon, and the discrepancy found in this
study could be due to physiological and methodological rea-
sons. Indeed, from one side, BHI mediated by CNS control
over ANS activity involves broad brain networks (e.g., CAN
and default mode network) [9]. From the other side, previous
studies have reported direct CNS reactions to cardiovascular
activity (e.g., heartbeat evoked potentials [21]), which could
be more localized in the space and time domain [22].
Additionally, microstate analysis might not capture transient
localized activity [3]. Thus, the asymmetric identification of
BHI-microstates in the brain-to-heart direction only, supports
the hypothesis that BHI phenomenon is more diffuse over
the scalp in descending direction, and more localized in the
ascending one.

The analysis also revealed that mental arithmetic leads to
statistically significant changes in the distribution of BHI
microstate occurrences.

In conclusion, the present study provides evidence for
the existence of microstates of the brain-heart axis, which
are spatio-temporal quasi-stable states that only refer to the
efferent brain-to-heart direction and change in number and
topography under different conditions. This demonstrates

that descending brain-heart communication occurs not only
at the regional level, but also at the whole-brain level.
Future studies will focus on characterizing BHI microstates
in different physiological and pathological conditions using
different methodologies.
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