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Abstract 
 

 

Recently, it is has become progressively more evident that classic diagnostic labels are unable to 

accurately and reliably describe the complexity and variability of several clinical phenotypes. This is 

particular true for a broad range of neuropsychiatric illnesses such as depression and anxiety disorders 

or behavioural phenotypes such as aggression and antisocial personality. Patient heterogeneity can be 

better described and conceptualized by grouping individuals into novel categories, which are based on 

an empirically-derived sections of intersecting continua that span both across and beyond traditional 

categorical borders. In this context, neuroimaging data carry a wealth of spatiotemporally resolved 

information about each patientôs brain. However, they are usually heavily collapsed a priori through 

procedures which are not learned as part of model training, and consequently not optimized for the 

downstream prediction task. This is due to the fact that every individual participant usually comes with 

multiple whole-brain 3D imaging modalities often accompanied by a deep genotypic and phenotypic 

characterization, hence posing formidable computational challenges. 

In this paper we design and validate a deep learning architecture based on generative models rooted in 

a modular approach and separable convolutional blocks (which result in a 20-fold decrease in parameter 

utilization) in order to a) fusing multiple 3D neuroimaging modalities on a voxel-wise level, b) 

efficiently convert them into informative latent embeddings through heavy dimensionality reduction, 

c) maintaint excellent generalizability and minimal information loss. As proof of concept, we test our 

architecture on the well characterized Human Connectome Project database (n=974 healthy subjects), 

demonstrating that our latent embeddings can be clustered into easily separable subject strata which, in 

turn, map to extremely different phenotypical information (including organic, neuropsychological, 

personality variables) which was not included in the embedding creation process. 

The ability to extract meaningful and separable phenotypic information from brain images alone can 

aid in creating multi-dimensional biomarkers able to chart spatio-temporal trajectories which may 

correspond to different pathophysiological mechanisms unidentifiable to traditional data anlysis 

approaches. In turn, this may be of aid in predicting disease evolution as well as drug response, hence 

supporting mechanistic disease understanding and also empowering clinical trials. 
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1. Introduction  
 

Over the last years, it is has become progressively more evident that classic diagnostic labels are 

unable to accurately and reliably describe the complexity and variability of several clinical phenotypes. 

This is particular true for a broad range of neuropsychiatric illnesses such as depression and anxiety 

disorders or behavioural phenotypes such as aggression and antisocial personality. In neurology and 

psychiatry, the problem is compounded by the clear lack of boundaries between normal and abnormal 

behaviour and by the presence of often overlapping diagnostic categories. The need for a trans-

diagnostic psychiatry and for a brain-based categorization of the clinical entities that transcend the 

traditional Diagnostic Standard Manual (DSM) labels has been emphasized several times. Alzheimerôs 

Disease (AD) and Parkinsonôs Disease (PD) are paradigmatic examples. Both diseases manifest 

themselves with a myriad of symptoms and signs which may or may not occur across different patients, 

and typically can be linked to extremely heterogeneous timescales and trajectories (i.e. evolutions over 

time). Accordingly, post-mortem studies have confirmed an extremely high heterogeneity in 

neuropathological findings not only in AD (Rabinovici et al., 2017) but also in other, classically 

unrelated, but most probably somehow dimensionally connected neurological syndromes (Adler et al, 

2010). 

To overcome this issue, trans-diagnostic approaches that rely on a more nuanced and mechanistic 

representation of the demographic and clinical features of each individual have been proposed. More 

specifically, patient heterogeneity can be better described and conceptualized by grouping individuals 

into novel categories, which are based on an empirically-derived sections of intersecting continua that 

span both across and beyond traditional categorical borders. Such novel patient groupings are likely to 

be disjoint and possibly become independent from the currently employed disease categories. This is 

because a single patient condition often transcends the traditional taxonomies. In contrast, it is 

reasonable to visualize and describe each patient as occupying their own, unique position in a high-

dimensional space that depends on specific pathophysiological mechanisms. The uniqueness of this 

position in such a high-dimensional space is likely to translate into new opportunities to optimize the 

diagnosis and treatment to the individual needs of each patient (ópersonalized medicineô). However, the 

possibility to translate this into the clinical practice can only depend on the possibility to access the 

multidimensional biomarker space that defines the uniqueness of each patientôs neurocognitive and 

behavioural ñprofileò. 

This conceptual paradigm is often termed precision- and (in some cases) personalized medicine, 

which lies in stark contrast with the more commonly employed ñone size fits allò approach. The latter 

is still pervasive in most clinical disciplines, although exceptions exist like e.g. in oncology, where 

some degree of personalization has been clinically successful.  Such observations highlight the urgent 

need for more objective classification criteria and frameworks, which need to be based on measurable 

and reproducible biomarkers. This can be achieved by employing deep generative models that are able 

to meaningfully group of individuals (healthy or with clinical disorders) on the basis of key brain 

structural measures. 

Neuroimaging data carry a wealth of spatiotemporally resolved information about each patientôs 

brain. However, they are usually heavily collapsed a priori through procedures which are not learned 

as part of model training, and consequently not optimized for the downstream prediction task. Still, for 

a comprehensive data-driven stratification, all relevant pathophysiological mechanisms should be well-

represented in the multidimensional data fed into the aggregation and pattern recognition frameworks. 

In this context, the recent appearance of several large multicentre and multimodal, curated large 

(between 1000 and 40000 individuals at the time of writing) data repositories (e.g. the Parkinson 

Progression Marker Initiative (PPMI) (Jennings et al., 2011), the Alzheimer Disease Neuroimaging 

Initiative (ADNI) (Mueller et al., 2005), the UK Biobank initiative (Sudlow et al., 2015), the Cam-CAN 

dataset (Taylor et al 2017) and the Human Connectome Project (HCP) (Van Essen et al., 2013) is 

providing novel formidable opportunities as well as challenges. On one hand, this amount of 

information which has never previously been accessible to neuroimaging researchers: every individual 

participant usually comes with multiple whole-brain imaging modalities of 105-106 voxels each, often 

acquired at multiple timepoints. Importantly, these data are usually accompanied by a deep 

geno/phenotypic characterization (e.g. genetic, biochemical, biohumoral, and neuropsychological 



markers). This opens up avenues to robust cross-modality data fusion, and therefore to subsequent 

reduction into embeddings that are fine-grained enough to 1) inform mechanistic hypotheses about 

disease physiology as well as 2) about the neural substrates determining currently unexplainable within-

disease variability. On the other hand, the computational and conceptual challenges in designing data 

reduction architectures able to exploit voxel-wise multimodal 3D imaging data (most deep learning 

frameworks are designed to learn from 2D images) while retaining realistic computation times and, 

crucially, extract informative embeddings while reducing data dimensionality by at least a factor 1000, 

are severe.  

The aim of this paper is therefore to design and validate a deep learning (DL) architecture based on 

generative models rooted in a modular approach and separable convolutional blocks. Our goal is to 

efficiently extract low level informative embeddings while A) fusing multiple 3D neuroimaging 

modalities on a voxel-wise level B) performing heavy dimensionality reduction with minimal 

information loss and C) building an architecture able to efficiently reconstruct brain images. This latter 

aspect is in fact gaining much attention in the field of DL and neuroimaging, mainly with the 

development of Generative Adversarial Networks aimed to obtain images reconstruction (Yang et al 

2020) 
As proof of concept, we test our architecture on the well characterized Human Connectome Project 

(HCP) dataset, where we used multiple modalities to perform our experiments such as JAC, NDI, FA 

and T1-W brain scans. We demonstrate that our latent multimodal embeddings can be clustered into 

easily separable subject strata. Additionally, these strata map to extremely different phenotypical 

information (including organic, neuropsychological, personality variables) which was not included in 

the embedding creation process. 

 

2. Materials and Methods 
 

A comprehensive overview of the workflow adopted in this paper is presented in Figure 1.  

 

 
 
Figure 1: A summary of the workflow of our paper. First, we design an efficient multi-modal deep learning 

architecture to encode subjects in low dimensional embeddings. Our model is unsupervised, which means that it 

is trained to reconstruct the original inputs. The learnt embeddings (beddings embeddings (uct the  rucsummarize 

information from multiple modalities. Then, the model upsamples the embeddings to generate a separate 

reconstruction for each input modality, using information from both modalities. Second, we cluster the subject 

embeddings using affinity propagation to stratify the subject population by identifying identify separate 

subtypes/subgroups. Third, we aim to demonstrate the external validity to our framework by mapping each of the 
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identified clusters with external phenotypic traits/factors (which have been generated from a number of raw 

phenotypic scores and interpreted by an expert neruposcientist, LP) which did not concur to forming the 

embeddings. This is done by simply averaging the factor loadings withing each cluster for each factor. This results 

in cluster luster luster n cluster  each factor. This results in cluster ter  our framework bythat have been formed 

using brain imaging data exclusively.  

 

2.1 Multi -Modal Deep Learning architecture  

 

2.1.1 Overview 

 

The architecture designed for this study can be viewed as a deep learning, unsupervised autoencoder, 

composed of a downsampling stage (encoder) and an upsampling stage (decoder) (See Fig 2). Several 

details are inspired from our recent supervised dual learning framework designed to process 3D medical 

images (Spasov et al., 2019). Here, on top of adopting an encode-decode design, in order to improve 

granularity, we incorporate skip connections between operational blocks at both stages (Ronneberger, 

et al 2015). The key aspects of our design choices can be summarized as: A) Parameter efficiency: in 

addition to conventional convolutional layers, we employed alternating sequences of depth-wise and 

pointwise convolutions, also known as depth-wise separable convolutions (F. Chollet 2017, A.G. 

Howard et al. 2017). This results in a lightweight neural network architecture with high parameter 

efficiency. This strategy has achieved superior performance in classification as well as image 

segmentation tasks (F. Chollet 2017, A.G. Howard et al. 2017, Zoph et al. 2018) and has been extended 

to medical image classification (Spasov et al. 2019), while limiting overfitting.  B) Multi -modality: it 

is well established that combining various medical imaging modalities can greatly enhance diagnostic 

and prognostic performance. We incorporate this data fusion aspect by employing a separate encoder 

and decoder for each of the modalities, which then all concur to generate a common embedding. The 

embedded representation is therefore learned (and contains information) from all modalities and can 

also be used for downstream learning tasks (see Section 3.2. and thereafter for a proof-of-concept 

experiment on multimodal neuroimaging data). Crucially, the decode step is based on this multimodal 

embedding only, demonstrating that modality-specific information can be re-distilled from the fused, 

embedded product of the encoding branch. C) U-Net skip connections: The encoders in our architecture 

reduce image dimensionality by consecutively pooling the output features of previous layers. This loss 

of resolution poses a difficulty when learning to reconstruct high-fidelity images with good granularity. 

U-Net (Ronneberger, et al 2015) overcomes this challenge, by supplementing the encoder-decoder 

architecture with contracting paths (or skip connections) between layers in the downsampling and layers 

in the upsampling stages. In this way we transfer localized high-resolution information directly to the 

reconstruction phase. 

 



 
Figure 2: Our multi-modal architecture for unsupervised learning. The network simultaneously takes multiple 

modalities (two in this diagram, M1 and M2) and reconstructs both original inputs from a jointly learnt low 

dimensional embedding, denoted as ñcombined embeddingsò in the figure. All modalities are processed in the 

downsampling and upsampling stages by successive applications of ad-hoc operational blocks termed conv, mid-

flow, ñdownòconv and ñupòconv. We reduce the dimensionality of the inputs via downsampling, and we merge 

their representations via concatenation (ṥ symbol) and convolution. Then, each upsampling stage can be viewed 

as a mirror image of a downsampling stage at a certain depth. We concatenate corresponding feature maps 

between the upsampling and downsampling stages, and apply a series of óôupôôconv, mid-flow and conv block 

operations to recover the original dimensionality of the inputs. Network parameters are learnt by minimizing the 

binary cross-entropy between the reconstructions and input images. 

 
2.1.2 Architecture details 
 

Figure 1. depicts the network architecture of our deep learning autoencoder for medical image 

embedding and reconstruction (two modalities in the diagram). All modalities have a single channel 

and voxel values are scaled in the [0, 1] range prior to processing. In this paper, all training was 

performed with two modalities (M1 and M2, see Section 2.3 for data details, possible combinations and 

Section 3. for realistic examples), where each input was a 3D image of size 128x128x96, resulting in 

approximately 12.2 M data points per modality. The joint multimodal embedding vector is composed 

of 1536 elements (hence representing an approximately 16000-fold data reduction in the encode step) 

end employed to recover the initial dimensionality, contrast and information of the inputs. Both the 

encode and decode stages are implemented as a sequence of operational blocks termed conv, mid-flow, 

ñdownòconv and ñupòconv (see below). The parameter-efficient separable convolutions (Spasov et al 

2019) are integrated within the mid-flow block and comprise the majority of convolutional procedures 

in the network. At each downsampling step we apply a sequence of operations comprising ñconvò, mid-

flow and ñdownòconv, and during upsampling ï ñupòconv, concat (concatenation needed for skip 

connections), mid-flow and conv. The inner working of these operational blocks is depicted in Fig. 2. 

In the downsampling stage we consecutively reduce the dimensionality of the inputs in 5 steps. At each 

step each dimension of the 3D images is halved, and the number of convolutional filters is doubled. We 

undo this process during upsampling by upscaling the embeddings by the same factor of 2 at each step. 

The downsampling and upsampling streams process all modalities in parallel. We only combine the 

low-dimensional representations of each input by first flattening them separately, then concatenating 

(denoted by ṥ symbol in Fig. 1) and convolving them. To illustrate how high granularity is achieved 

through skip connections, consider the output feature maps with dimensions 32x32x24 and 4 channels 

in the upsampling stage. First, we ñupòconv these activations and scale each dimension twice to 

64x64x48. Then, we concatenate these intermediate representations with feature maps produced after a 

single step of downsampling, which have the same dimensionality, as denoted by the directed arrow 

labelled ñskip connectionò in Fig. 1. We then mix the combined representations with a mid-flow and a 
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conv block to produce the upsampled feature maps one level higher in the Upsample stream (dimensions 

64x64x48 with 2 channels).  

 

2.1.3 Operational blocks 

 

In both the encoding and decoding stages, we employ a series of operational blocks, similar to the ones 

proposed in Spasov et al., 2019, comprising conv, ñupòconv, ñdownòconv, mid-flow  (see Fig. 2 for a 

schematic). Fig. 2 a) depicts the most foundational block in our neural network model ï the (sep)conv 

operational block. It has two variants ï one working with a standard 3D convolutional operator (conv) 

and another utilizing 3D separable convolutions (sep conv). In both variants the inputs are first 

convolved, then batch normalization (Ioffe and Szegedy 2015) and an exponential linear unit activation 

are sequentially applied. We also allow for dropout (Srivastava, et al 2014) to be used as the last layer 

in the (sep)conv block. Both ñdownòconv and ñupòconv are simple extensions of the conv block. For 

ñdownòconv we append 3D Max Pooling (size=3, stride=1) to reduce the dimensionality of feature 

maps in the downsampling stream after conv block processing. On the other hand, in ñupòconv, we 

prepend 3D upsampling (size doubles in each dimension) to the conv block. The majority of 
convolutional processing occurs in an operational block termed mid-flow (see Fig 2. b), which has two 

parallel lines of processing. On one hand, three consecutive sep convs are applied to the inputs. On the 

other, we introduce a skip connection which does not transform the inputs and allows them to propagate 

unchanged to the output, which has been proposed to facilitate training of deeper neural networks (He 

et al., 2016). Finally, we combine the parallel lines of processing by adding them and returning a single 

output feature map. Substituting standard convolutions with separable ones results in a 20-fold decrease 

in parameter utilization in a single mid-flow block. A thorough presentation of separable convolutions 

and their functional difference from standard convolutions is given in F. Chollet, 2017 and their 

implication to parameter efficiency in medical imaging application is discussed in Spasov et al., 2019. 

 

The model was implemented in Keras, with a TensorFlow backend and trained on a Nvidia TITAN V 

GPU. The training was performed over 200 epochs, batch size 1. 

 

 

 

 
a)                          b) 

 

Figure 1: Inner workings of the fundamental blocks used in the neural network diagram from Fig. 1. Since the 

conv, sep conv, ñdownòconv and ñupòconv blocks are very similar in structure, we present a single diagram in 



fig 2. a) and use it to describe the other derived operational blocks. For example, in ñdownòconv we apply 3D 

Max Pooling (size=3, stride=1) at the end of processing, whereas in ñupòconv, we prepend 3D Upsampling (size 

doubles in each dimension); sep conv denotes using separable instead of conventional convolutions. Fig 1. b) 

presents the mid-flow block based on a series of three sep conv blocks and a skip connection adding the original 

input and the output of the final separable convolution. All convolutional kernel sizes in our work are of size 

5x6x5 with stride=1. The number of channels can be inferred from Fig. 1. 

 

2.2 Cross-Validation Procedure and Assessment of the reconstruction quality 

 

In order to evaluate the performance of our encoder-decoder architecture, and verify our model did not 

suffer from overfitting, we implemented a 10-fold cross validation procedure using two modalities from 

our data set of approximately 1000 subjects. The following procedures / metrics were employed for 

each fold to assess the ñdifferenceò between the original and reconstructed images, and hence the overall 

reconstruction performance. 

1) Mean Squared Error (MSE) computation. The MSE between each reconstructed and original pair 

was computed across whole voxelwise images. 

2) Definition of a measure called henceforth ñnormalized differenceò (NormDiff), defined as 

ὔέὶάὈὭὪὪ . This metric is bounded between -1 and 1, and is intended to quantify 

asymmetry between a real and a reconstructed value. The advantage of this is to eliminate dependency 

on the underlying image intensity and to focus on relative errors. By calculating this metric voxel-wise, 

we obtained normalized difference images which are then collapsed through the median operator to 

obtain one value for each real-reconstructed pair.  

 3) Estimation of Contrast to noise ratio (CNR), an important metric in diagnostic imaging. We adopted 

a simple definition of CNR based on two randomly selected regions of interest (ROI), namely ὅὔὙȟ

. We then divided each image in regular regions of interest (ROIs) of dimension 

4x4x3, and successively randomly sampled 1000 ROI pairs while avoiding sampling from the 

background. This yielded a 1000-sample estimate of the CNR distribution of each image, which was 

collapsed through the median operator to obtain one value for each real image and one value for each 

corresponding reconstructed image. Finally, the reconstructed-real difference in estimated median CNR 

was evaluated using the normalized difference as defined above. 

 

2.3 Data and preprocessing 

 

2.3.1. Population  

 
The population used for the present study consists in 974 subjects drawn from the publicly available 

Human Connectome Project (HCP) public data repository located at https://humanconnectome.org/ (see 

Table 1 for demographics). The cohort resulted from downselecting the total 1200 subject to those who 

had valid and downloadable diffusion MRI data (see Table 1) at the time of processing. Additional 

phenotypic variabiles are summarized in the supplementary materials (Table S1). 

 

 Age Handedness BMI 

Males 

(n=444) 

27.94±3.65 60.54±43.63 26.78±4.36 

Females 

(n=530) 

29.42±3.52 69.88±43.93 26.10±5.85 

 

Table 1: The table shows median and standard deviation of three demographics information on the HCP cohort 

studied: age, handedness and BMI (n=974) 

 

2.2.2. Phenotypic Variables and factor analysis 

 

In order to better characterize our study population, and also in order to test the ability of the information 

encoded in our multimodal embeddings to map to distinct phenotypic groups, we clustered the 



population in the latent embeddings space. For this purpose, fifty -one questionnaire measures, 

demographic variables, or neuropsychological tests assessing for lifestyle, psychological and physical 

well-being, personality, cognitive functioning, and emotional behavior were included in this study (see 

Supplementary material). A principal component analysis (PCA) with Varimax rotation was used to 

reduce data dimensionality and identify the main factors for the psychological, cognitive, and physical 

and mental health latent dimensions. Varimax rotation rotates the orthogonal basis to dispersion of the 

loading scores across components, hence simplifying the expression of the subspace extracted. The 

rotated component matrix was employed for extraction of individual factor (retaining only factor swhich 

corresponded to eigenvalues > 1 ) loading scores using the regression methods. Those scores were then 

employed for characterizing the strata generated by unsupervised clustering of our multimodal 

embeddings (see Section 2.4). In order to provide an operational neurobiological interpretation for each 

factor, ladings were thresholded at an absolute value of 0.3, which allowed an expert neuroscientist 

(LP) to identify the underlying factors and interpret them according to common associations between 

phenotypic variables. 

 

2.3.3 MR data acquisition 
 

All imaging data employed in this study were acquired by the HCP consortium on a Siemens Skyra 3T 

scanner with a customized SC72 gradient insert. T1w 3D MPRAGE images were acquired with 

TR=2400 ms, TE=2.14 ms, TI=1000 ms, flip angle=8 deg, FOV=224x224, 0.7 mm isotropic voxel, 

bandwidth =210 Hz/px, iPAT=2, Acquisition time=7:40 (min:sec). Diffusion weighted images were 

acquired with Spin-echo EPI sequences (b-values = 0, 1000, 2000, 3000 s/mm2 in 90 gradient directions 

(interspersed with an approximately equal number of acquisitions on each shell). Diffusion weighting 

consisted of 3 shells of b=1000, 2000, and 3000 s/mm2. The diffusion directions were uniformly 

distributed in multiple q-space shells and optimized so that every subset of the first M directions is also 

isotropic (Caruver et al., 2013), TR=5520 ms, TE=89.5 ms, flip angle=78 deg, refocusing flip 

angle=160 deg, FOV=210x180 (RO x PE) matrix=168x144 (RO x PE), slice thickness =1.25 mm, 111 

slices, 1.25 mm isotropic voxels, Multiband factor=3, Echo spacing=0.78 ms, BW=1488 Hz/Px, Phase 

partial Fourier 6/8). A full diffusion MRI session included 6 runs (approximately 9 minutes and 50 

seconds each). Diffusion gradients were monopolar. Image reconstruction uses SENSE multi-channel 

(Sotiropoulos et al., 2013).  

See 

https://humanconnectome.org/storage/app/media/documentation/s1200/HCP_S1200_Release_Referen

ce_Manual.pdf.  for additional details. Al l brain images were reviewed for incidental brain 

abnormalities by a neuro-radiologist, and pre-processed following the minimal HCP pipeline by the 

HCP consortium (Glasser et al., 2013). 

 
2.3.4 Diffusion data preprocessing and model fitting 

 
Diffusion image preprocessing, performed by the HCP consortium, included state-of the art procedures: 

intensity normalization across runs, distortion correction through the óTOPUPô tool (part of FSL, 

(Jenkinson et al., 2012), eddy current and motion correction through the óEDDYô tool (also part of 
FSL), gradient nonlinearity correction, calculation of resulting gradient bvalue/bvector deviation, and 

Registration of mean b0 to the corresponding T1w volume with FLIRT BBR+bbregister (also part of 

FSL). This is followed by transformation of diffusion data, gradient deviation, and gradient directions 

to 1.25mm structural (T1w) space. Starting from these preprocessed data both the tensor model 

(Diffusion Tensor Imaging ï DTI, only bvalues <= 1000) and the NODDI model (all data) (Zhang et 

al., 2012) were fitted to each individual dataset using the microstructure diffusion toolbox (MDT) 

(https://github.com/robbert-harms/MDT). From the DTI model, we extracted fractional anisotropy 

maps (FA), which are known to be sensitive to microstructural alterations. From the NODDI model we 

extracted neurite dispersion indices maps (NDI), which are known to be even more specific to the same 

type of alterations. 
 

2.3.5 Study specific template creation and image registration 
 

https://humanconnectome.org/storage/app/media/documentation/s1200/HCP_S1200_Release_Reference_Manual.pdf
https://humanconnectome.org/storage/app/media/documentation/s1200/HCP_S1200_Release_Reference_Manual.pdf
https://github.com/robbert-harms/MDT


To improve registration accuracy, we built a study-specific T1 template using the T1-weighted images 

After bias filed correction in FSL, all T1-weighted images were non-linearly co-registered to each other 

(symmetrical diffeomorphic mapping), averaged iteratively (5 iterations), and co-registered to the final 

template. A binary brain mask was generated from the T1 template using BET2, also part of FSL.  

The template creation and registration procedures were performed using the Advanced Normalization 

Tools (ANTs) software (Avants et al., 2011). Non-linear transformations were initialized through a 

chain of center of mass alignment, rigid, similarity, and fully affine transformations followed by local 

nonlinear warping (metric: neighborhood cross correlation, sampling: regular, gradient step size: 0.12, 

four multi-resolution levels, smoothing sigmas: 3, 2, 1, 0 voxels in the reference image space, shrink 

factors: 6, 4, 2, 1 voxels, histogram matching, data winsorisation with quantiles: 0.001, 0.999, 

convergence when the slope of the normalized energy profile over the last 10 iterations<10-8).  

We then extracted the local Jacobian determinant (JAC) of the non-linear part of the last-stage 

deformation field which takes each T1-image into template space. The JD image quantifies the amount 

of local volume variation (contraction/expansion) computed when matching the single subject image to 

the template and is generated in the template space. Also, the same warp fields were applied to all 

diffusion derived maps (FA and NDI), resulting in all images (T1, FA, NDI, JAC) in the same 1.25 mm 
resolution space with high intra-modality and inter-subject anatomical correspondence and 

downsampled by a factor 2 to yield final volumes of size 128x128x96 (Figure 3).  Finally, all images 

were robustly normalized into the 0-1 range by using min-max normalization (0.1 and 99.9 percentile) 

across the whole population. Min-max normalization is often employed in deep learning to facilitate 

convergence of the learning algorithm. Image co-registration required ~26,500 hours of CPU time. 

Calculations were performed on a 600-node compute cluster with 8GB-RAM/node. 

 

2.4 Mapping multimodal embeddings to phenotypic variables 

 

2.4.1 Clustering multimodal embeddings  
 

As proof of concept of the usefulness of our multimodal embedding in efficiently compressing 

information, we adopted an unsupervised clustering strategy in order to explore the existence of 

subgroups in the brain data (a near-impossible procedure when working directly with whole brain 

images) and mapped these subgroups onto the external phenotypic data which had not concurred to 

forming the embeddings. We employed affinity propagation (AP) clustering, which does not require an 

a priori number of clusters to be specified and performs well in the presence of noise (Vlasblom et al 

2009). AP was used in conjunction with Euclidean Distances and relies on two main parameters: 

preference (which determines the likelihood of a point to be chosen as exemplar) and damping (related 

to the speed and accuracy of numerical stabilization). These were optimized through a grid search 

procedure across 10 damping (0.5-1, equal intervals) and 1000 preference values (sampled with equal 

spacing between bottom and top percentile of the negative squared Euclidean Distances of the data 

matrix at hand) using the Silhouette index score as a performance metric (Rousseeuw et al 1987). 

The between-cluster differences in factors extracted from the phenotypic variables were assessed 

through the non-parametric Kruskall-Wallis tests (KW) (Wayne, 1990) and corrected for multiple 

comparisons across factors through the FDR Benjamini and Hockberg correction procedure (Benjamini 

& Hochberg, 1995). P<0.05 (FDR corrected) was considered statistically significant. 

 

2.4.2 Bootstrap analysis between-cluster differences in phenitypical factors 

In order to test the hypothesis that the statistically significantly differences in phenotypic variables we 

found in the previous step may be a result of random effects, we proceeded as follows. Given m subjects 

(i.e. embeddings) which have been partitioned into ὲ ñtrueò clusters of sizes s1ésn, as in 2.4.1 , we 

randomly repartition the m subjects in the clusters into same number of groups (n) with the same sizes 

(s1ésn.) as the ñtrueò clusters and compute the corresponding KW statistics. This bootstrapping 

procedure is repeated M times (here M= 10000, sampling with replacement). We then evaluated the p-

value related to the hypothesis described above as the number of bootstraps whose KW statistics is 

higher than the ñtrueò KW statistics, divided by M. This fraction of bootstraps serves as a surrogate p-

value corresponding to the above outlined hypothesis ï i.e. if this pvalue is <0.05 (after FDR correction 



across all factors), the ñtrueò statistical significance in clusterwise differences between factor values 

can be considered non-random.  

 

3 Results 

 
3.1. Reconstruction results 
 

In order to evaluate the quality and generalization ability of our model, we performed experiments using 

three pairs of modalities i.e. JAC-FA, JAC-NDI, T1-NDI (Figure 3). These choices of pairs were made 

in order to a) be possibly sufficiently general to explore the ability of our architecture to combine 

different constrasts, and 2) generate pairs of modalities which, to some degree, complementarily 

included mainly white matter (WM) and grey matter (GM) constrast. The presence, in the full 

reconstructed images, of key anatomical detail was confirmed through sample whole-image inspection 

by an expert neurologist (LP). Visually, we obtained excellent reconstruction quality in FA, NDI and 

JAC images (see also cross-validation results below). Some loss of detail in the subcortical structures 

as imaged in the T1 constrast can be seen when T1 is paired with NDI. This is possibly due to 

overlapping anatomical redundancy with the NDI image. 

 
 



 
Figure 3: Example of pairs reconstructions for JAC-NDI, JAC_FA and T1-NDI modalities, using our 

multimodal architecture. Color-scales are arbitrary but equal for each real-reconstructed pair. 

 

3.2. Cross-validation results 
 

In this section, we present the cross-validation results (i.e. the generalization ability of our model) for 
one exemplary pair of modalities, namely JAC and NDI. This choice was made based on the facts that 

1) the Jacobian determinant of a transformation which brings a T1 image into standard space has been 

seen to be a superior indicator of grey matter density changes as opposed to the T1 image intensities 

alone  2) the NDI has shown promise and applicability in a vast number of neuroscience studies (along 

with a greater sensitivity and specificity in detecting microstructural alterations). Figure 4 depicts the 

10-fold cross-validation results as described in the Methods section. MSE was bounded between 0 and 

0.02 in all folds, except for fold six where it reached a median value (across all subjects in the fold of 

approximately 0.038). Considering that both JD and NDI metrics are bounded by definition between -

1,1 and 0,1 (respectively) and commonly assume absolute values up to 0.5-0.7, these MSE values are 

around 1/200th of the original intensities.  
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Figure 4:  CNR, MSE and Normalized Differences for each of the 10 folds within the cross-validation procedure. 

The boxplots represent the distribution of the values, where the median and the interquantile rages of the 

distribution are plotted. We also report the values of the Median (with the dotted red line) and of the Median 

Absolute Deviation (MAD, blue dotted line) across all folds. The x axis represents the folds (from 1 to 10) and the 

y axis the values of the respective plotted indicator.  

 

3.2. Phenotypic Variables and Factor Analysis 

 
The independent phenotypical dimensions derived from the PCA-based factor analysis (see Methods) 

resulted in retaining 13 factors which cumulatively explained 63% of the total variance. Upon 

inspection of the factor loadings by an expert neuroscientist (LP), we were able to assign proof-of-

concept, coherent interpretations to each factor based on the single phenotypic variables with highest 

loadings in each factor. In particular, in order of decreasing variance,  these factors appeared to reflect 

negative affect; sociability; self-efficacy and wellbeing; crystallized intelligence; aggressive behaviour; 

sustained attention and episodic memory; gender; fluid intelligence; high levels of blood pressure 



(hypertension); physical health/young age; positive personality traits (high agreeableness, high 

extraversion, and high mind openness); gait speed and physical endurance; right handedness. 

 

 
Figure 5. Loadings of each phenotypic variables (thresholded at an absolute value of 0.3 for visualization 

purposes) on each of the 13 factors which, cumulatively, explained 63% of the data variance. For a detailed 

explanation of the phenotypic variables and their origin, please see the HCP data dictionary at 
https://wiki.humanconnectome.org/display/PublicData/HCP+Data+Dictionary+Public-

+Updated+for+the+1200+Subject+Release. See supplementary materials for descriptive statistics of the original 

phenotypic variables. 

  

https://wiki.humanconnectome.org/display/PublicData/HCP+Data+Dictionary+Public-+Updated+for+the+1200+Subject+Release
https://wiki.humanconnectome.org/display/PublicData/HCP+Data+Dictionary+Public-+Updated+for+the+1200+Subject+Release


 

3.4 Clustering and mapping multimodal embeddings to phenotypic variables 

When applying the clustering procedure to the multimodal embeddings computed  (as descrbed above) 

from the JAD and NDI images, we obtained nine distinct clusters (see Fig. 6 for sizes and for color 

reference for subsequent results on phenotypic variables). Figure 6 shows the number of individuals 

belonging to each cluster for the JAC-NDI experiments performed. 

 

 
 
Figure 6: Clusters sizes obtained when running Affinity Propagation clustering with optimized parameters (see 

Methods) on the multimodal embeddings. 

 

 

When using the KW test to explore between-cluster differences in factors extracted from the phenotypic 

variables, we obtained significant effects in six factors which had been identified as representing (in 

this sample) aggression, Blood Pressure, Crystallized Intelligence, Righthandedness, biological sex and 

Young age (FDR corrected across all factors), see Fig 7. In addition, for all these values, bootstrap 

analysis (see methods) Showed that these effects (which were due to the assignment of subjects to each 

cluster of a certain size) were far not random (see Fig 8.). 

 

 
 

 



 
 

Figure 7: Phenotypic factor distribution across the nine identified clusters. Only phenotypic factors in which a 

significant difference (FDR corrected across clusters) across clusters are shown.  

 

 
Figure 8: Bootstrap results comparing the ñtrueò KW statistics (red, dotted line) resulting from our cluster 

assignments to the distribution of the KW statistics obtained when comparing Factor values between clusters after 

repeatedly (10000 samples) and randomly sampling individuals across cluster distributions with the same sizes.  

 

Finally, we asked the question whether the clusters we identified corresponded to 

recognizable/interpretable ñprofilesò (made of  phenotypic factors) which could be further interpreted 

and/or heuristically explained. To this end, for each cluster and each factor, we computed the cluster-


