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Abstract—Over the past few decades, Virtual Reality (VR)
has emerged as a popular topic in a wide range of fields, such
as information technology and psychology, among others. One
reason for its importance was due to the ability to virtualize
real-world scenes. This process typically involves capturing data
from those scenes to generate accurate, detailed, and immersive
3D models. However, the creation of virtual content from real-
world scenes has traditionally relied on manual techniques, as
well as photogrammetry or Computer Vision (CV) algorithms.
This frequently yields time-intensive, less accurate, intricate,
and semi-automatic results. To tackle these limitations, a novel
framework called Virtual Experience Toolkit (VET) has been
proposed. It employs CV and Deep Learning (DL) techniques to
swiftly and seamlessly virtualize any 3D scenario from real indoor
environments. To demonstrate the effectiveness of VET, a diverse
dataset of virtualized 3D scenes was generated, supplementing the
information from the ScanNet dataset. VET has the potential to
significantly enhance the virtualization of 3D indoor scenarios
from real scenes, making the process easier, more precise, unified,
consistent, automated, and effective for a broad spectrum of VR
applications.

Index Terms—3D Scene Understanding, Indoor Scenes, Virtual
Reality (VR), ScanNet, Scene Reconstruction

I. INTRODUCTION

The growing fascination with VR, coupled with advances in
CV and graphic technologies while increasing the availability
of affordable hardware devices, has expanded the range of
applications for VR, including areas such as psychology,
gaming, medicine, and education, further contributing to its
significance in various fields [1].

The research leading to these results has received partial funding from the
European Commission under grant agreement N. 101017727 for the project
EXPERIENCE.

One of the key components of VR is the ability to create
realistic and interactive 3D scenes; this is one example where
3D scene virtualization becomes highly valuable. This refers to
transforming real-world environments into accurate digital rep-
resentations, offering immersive simulations. This technology
finds applications beyond VR, such as gaming and architecture
[6], due to its ability to simulate 3D spaces, providing realistic,
detailed, and interactive experiences in digital environments.
In particular, its main advantages include creating a faithful
representation of the real-world environment and cost savings
compared to physical prototyping.

Traditionally, 3D scene virtualization had been done by a
team of graphic designers, manually creating and inserting
each of the 3D objects into the designed 3D virtual scene.
This solution is time-consuming and requires highly detailed
information about the scene, such as images from different
points of view and measures of the whole scene [4], [9].
In contrast, due to advances in CV and DL techniques, 3D
scene virtualization became semi-automatic, using inputs such
as text, 2D images, and more recently, sets of RGB-D images
captured with cameras such as the Intel Realsense D4XX fam-
ily. These new methods perform each of the steps separately,
and each of these are performed either automatically, semi-
automatically, or manually.

Therefore, integrating each step into the same workflow is
complex, hindering the usability of this type of tool. As men-
tioned, the whole process requires different stages to perform a
3D scene completely immersive, interactive, and similar to the
real-word. Specifically, it needs to perform a 3D reconstruction
and then apply a 3D scene understanding process. Tradition-
ally, photogrammetry was employed for scene reconstruction,
but this method tends to be costly in terms of time, mainly as



it necessitates highly textured images to yield precise results.
Alternatively, accurate and fast methods to reconstruct 3D
information have emerged based on Dense SLAM techniques
like BundleFusion [2]. Regarding the 3D scene understanding
step, it was commonly carried out manually. However, since
last years, this process has been done using CV and DL tech-
niques that allow the system to identify, classify, semantically
segment and represent the different classes of objects in the
scene. Specifically by using the most similar CAD models in
the same position, orientation, and scale. Nevertheless, there
are still some limitations related to scalability, automation, and
integration in the same workflow [8].

To tackle the mentioned challenges, we propose an end-to-
end framework called VET to carry out the 3D virtualization
of the scene, starting with the scene capture and automatically
performing all the necessary steps until the virtualized scene
is obtained. Concretely, it performs a 3D reconstruction,
then applies a 3D scene understanding step, and finally, the
information obtained is integrated into a digital scene. The
proposed solution is supported by our own dataset (consisting
of various scenes such as bathrooms, bedrooms, kitchens,
conference rooms and offices among others) and ScanNet [11]
to prove its effectiveness and precision. In summary, the main
contributions proposed in this work are:

• A fully automatic and user-friendly framework integrated
into a single graphical application developed in C++,
Python, and Unity3D, that uses CV and DL techniques,
which is adaptable for any user profile.

• Our framework’s broad applicability across a wide range
of indoor scenes, owing to its ability to work with an
extensive array of classes, particularly 200 classes.

• An accurate solution that integrates most of the current
state of the art methods for each pipeline step, like
Mask3D [17] for instance detection or ScanNotate [19]
for CAD retrieval and pose estimation.

• A dataset that complements and it is similar to ScanNet
dataset [11]. Composed of RGB-D images, camera pose
information, the 3D reconstructed scenes, and the 3D
scene understanding results. The indoor environments in
size and type. This dataset is open source and available
at https://github.com/Pamogar/VET-IndoorDataset.

• A qualitative validation process using ScanNet dataset
and our own dataset.

The remainder of this paper is organized as follows. Section
II briefly reviews existing 3D scene virtualization methods
according to the input and methods required to perform the
reconstruction. Section III presents the proposed framework.
Section IV introduces the results obtained, the discussion about
them, and a brief comparison with other known methods.
Finally, Section V includes the overall conclusions and some
suggestions for future work.

II. STATE OF THE ART

In recent years, 3D scene virtualization has gained
widespread attention due to increased automation [3]. Several
solutions have been proposed for 3D scene generation, with

varying approaches depending on the input data and the
techniques used to perform the virtualization.

Many automatic 3D scene generation solutions use text
or voice as input, benefiting non-graphic domain users. For
instance, Seversky et al. [4] present a system that processes
the input description by a speech tagger extracting remarkable
information and keywords to locate the objects using spatial
relation. These methods have some drawbacks, firstly, with the
usage of two engines: a language engine and a graphics engine,
the process becomes highly time-consuming. And secondly,
textual descriptions can be ambiguous, and translating them
accurately into a 3D scene can be challenging.

To remove the need for a language engine, and thanks
to the advances in CV and DL, Vouzounaras et al. [5]
proposed a method based on CV approaches that use 2D
images as input for the 3D reconstruction. Specifically, they
used the information about vanishing lines while removing
perspective distortion to produce the 3D reconstruction. The
main drawback is the lack of 3D scene understanding step to
perform the 3D virtualization. Moreover, Marullo et al. [6]
presented another method based on CV techniques that use
Google Cloud Vision API to extract the context and object
information, and it retrieves the most similar CAD model to
each instance object of the 3D scene using a Models database.
The main problems of using 2D images as input are the
limitation on the viewpoint, the ambiguity due to the lack of
spatial and texture information, and the issues with occlusions.
As a result, the obtained 3D scene needs to be completed.

Different methods that use 3D information appeared, pre-
cisely RGB-D information. In this field, two main groups
are observed depending on the nature of the environment:
3D virtualization of outdoor and indoor scenes. For outdoor
scenes, Yang et al. [7] propose a system that obtains the 3D
virtualization of the environment for a VR application using
CV techniques. However, it is limited to the detection of
walkable areas and obstacles, therefore, it does not perform
instance detection or CAD alignments.

Regarding indoor scenes, Li et al. [8] propose a solution
that generates indoor BIM reconstruction automatically imple-
menting DL algorithms. However, this method only processes
five different classes: floor, ceiling, walls, doors, and windows,
limiting the virtualization. Similarly, the VRFromX method [9]
creates the virtual environment using CV solutions, following
this pipeline: scan the real world and then replace the 3D
instances detected with CAD models. However, in order to
detect the object, users must select the ROI where it is located.
Thus, the method is not fully automatic. Finally, another semi-
automatic method is presented by Moro et al. [10] to avoid
obstacles in an indoor scene. To achieve this, they scan the
environment and then estimate the layout using CV techniques.

In summary, while many different methods have been pre-
sented, almost all of them are either not fully automatic [6],
[9] or not end-to-end 3D virtualization frameworks [5], [10].
Analyzing the solutions previously disclosed, we propose a
framework that tackles these limitations, which will be detailed
in the next section.

https://github.com/Pamogar/VET-IndoorDataset


III. METHOD

In this section, we deeply explain the different stages that
our proposed framework, VET, carries out to achieve the 3D
virtualization of real indoor scenes. The complete pipeline is
split into different parts done sequentially (Figure 1).

A. 3D Reconstruction

3D reconstruction is the first critical step in our 3D vir-
tualization pipeline, which uses RGB-D images to precisely
replicate real-world scenes in three dimensions.

VET utilizes an adapted version of BundleFusion [2], a
technique originating from Dense SLAM methodologies. This
approach has proven its robustness, accuracy, and effectiveness
in creating real-time color 3D reconstructions of indoor spaces
using an RGB-D camera. Through close-loop and bundle ad-
justment techniques, BundleFusion ensures global consistency,
refines camera poses, and improves overall reconstruction
quality. It is a reliable and powerful approach for creating high-
quality real-time 3D reconstructions of indoor environments.
Additionally, VET integrates a volumetric fusion method
based on the recent work of Dong et al. [12], which is more
precise than BundleFusion technique.

Furthermore, VET demonstrates substantial versatility, ac-
commodating the majority of RGB-D cameras currently avail-
able on the market, including the Intel Realsense D435 and
D415, and the ZED2i cameras used for our own dataset, and
the Structure Sensor used in ScanNet.

Once the 3D reconstruction is obtained, some post-
processing of the scene is carried out. This step is executed in
order to reduce the computational cost, clean the resulting 3D
reconstruction, and align it to ScanNet’s coordinate system.
First, it was employed an algorithm known as Quadric Dec-
imation [13] to considerably reduce the number of polygons
from the initial reconstruction in order of a 100. Lately, a
method to remove the artifacts created due to the limitations
of the sensor [14] was introduced. Specifically, it determines
the number of connected components and removes those small
clusters. Finally, the obtained 3D scene is aligned to the same
coordinate system as ScanNet [11] automatically.

B. 3D Scene Understanding

As mentioned in previous sections, once the 3D reconstruc-
tion is obtained, the result requires some processing to identify
the instance objects in the scene and then align this to the most
similar CAD model. VET applies this process to achieve the
information required to virtualize the information in a digital
scene. Therefore, an indoor scene understanding approach
is carried out to automatically comprehend the information
presented in the scanned scene. In particular, two processes
are done in parallel: on the one hand, semantic segmentation
and layout estimation, and on the other hand, instance segmen-
tation, CAD retrieval, and alignment, as indicated in Figure 1.

First, it is performed the semantic segmentation of the scene
to obtain the information used to compute the layout. The
main goal of this step is to label the 3D reconstructed scene,
splitting it into different regions based on the semantic classes.

In order to carry out this, we select O-CNN (Octree-based
Convolutional Neural Networks) [16] because this approach
has proved its efficiency and precision when using ScanNet
dataset. After applying the inference of the pre-trained model
with ScanNet dataset, the segmented 3D scene is obtained.
For this specific case, it is used the classes in ScanNet dataset
because it already includes classes such as wall, floor, cabinet,
door, and windows, which are the labels required to perform
the layout assessment step. Therefore, the scene is filtered to
obtain a reduced version that only contains those classes.

Layout estimation is another crucial phase because it pro-
vides information about where are the limits in the room
while delineating the 3D planes and the corners of the scene
obtained from the intersection of the planes. Currently, most
of the methods in the literature are based on RANSAC for
plane detection [8], [10]. Despite the popularity of RANSAC
in this field, a novel method called Robust Statistics-based
Plane Detection (RSPD) [15] is used in this work due to
the improvement in computational time, the reduced number
of initial constraints needed and the precision obtained. In
particular, the planes are detected on the filtered point cloud
mentioned above. Once the planes are obtained, these are
filtered depending on their normal direction, and finally, the
selected planes and corners are obtained to define the layout.

While performing the previous stages, the instance segmen-
tation is also carried out. This process involves identifying and
labeling the instances of the various classes in a 3D scene.
Despite the fact that different methods exist, it was selected
one of the state of the art solutions for the ScanNet dataset.
This approach, called Mask3D [17], automatically segments
each instance in the scene, obtaining accurate results for
both datasets, ScanNet and ScanNet200 [18]. Specifically, this
method consists of a feature backbone, a transformer decoder
that utilizes mask modules, and transformer decoder layers to
refine queries. Therefore, after applying the inference of the
pre-trained model with ScanNet200 dataset, the result is a 3D
reconstructed scene with the different instances labeled.

Once the instance segmentation is carried out, it is required
to automatically and precisely replace the instances of the
different objects in the 3D scene with CAD models in the same
position, orientation, and scale as real-world objects. This
process is done to be able to modify the shape, appearance,
and spatial location of the elements in the scene while reducing
the polygonal load of the scene. To do so, VET incorporated
the recent method proposed by Ainetter et al. [19] known
as ScanNotate, because it replaces the objects detected in
the scene with semantically and geometrically similar CAD
models. ScanNotate first estimate the 7-DoF pose of the
objects, and then it retrieves the closest matching CAD by
comparing the labeled object with the CAD models of the
same class. In addition, this method joins objects of the same
class into clusters in order to assign the same CAD to all the
objects in one cluster, and finally, it applies a refinement step
to make the results more precise.

One of the limitations found in ScanNotate is the usage of a
reduced number of indoor classes of CAD model, in particular,



Fig. 1: Workflow of the proposed approach.

ShapeNet [20] dataset. To solve this issue, we complement
ShapeNet with some classes of ModelNet [21] that could be
detected by the instance segmentation method. For instance,
toilet and range hood, among others. Additionally, simple
object classes located at the walls, such as doors, windows
or pictures, are substituted using generic models, and placing
them in the same planes as the wall.

Finally, VET is able to virtualize the 3D scene using the
layout information and the best CAD models aligned for each
element in the scene.

C. Integration

VET was developed using Unity3D (Version 2020.3.39f1).
It has a GUI (Figure 2) to guide the user during the whole
pipeline. At the same time, it is responsible for executing in
background all the different C++ and Python processes con-
figured to work automatically using a single configuration file.
In addition, the different processes are performed sequentially
apart from the 3D scene understanding, where two stages are
carried out in parallel.

Fig. 2: GUI created for the VET framework.

IV. RESULTS

In analyzing the advantages and disadvantages of the pro-
posed framework concerning other frameworks, we identify
that VET is highly scalable, fully integrated, automatic, and
precise. This work’s accuracy was measured quantitatively by
reviewing the results of the different methods used during the
whole pipeline evaluated on the ScanNet dataset. At the same

time, different qualitative results will also be introduced to
strengthen the numerical results and compare them with other
methods’ performances (Table I).

TABLE I: Comparison of the features of different virtualiza-
tion methods.

Frameworkds VRFromX [9] Automatic BIM [8] VET
Number of classes 40 5 200

Automatic Semi Fully Fully
Virtualization No No Yes

3D Reconstruction No Yes Yes

To prove the achievements in terms of precision, the frame-
work was tested by creating a dataset of 35 different instances
acquired from the Universitat Politècnica de Valencia (UPV),
which contains rooms like living rooms, meeting rooms, and
bathrooms, among others. In particular, it comprises RGB-D
images, camera pose information, 3D scene reconstructions,
and the results of the 3D scene understanding process.

In order to present the qualitative results, the performances
of all the different stages will be depicted. First, it was done
a 3D Reconstruction illustrated in Figure 3a. Concretely, this
scene contains different objects of different classes that must
be substituted by the most similar CAD model in the same
position, orientation, and scale.

From the 3D reconstructed scene, it was applied the segmen-
tation method (O-CNN) to obtain the information required to
carry out the layout estimation. In particular, O-CNN approach
obtains a mIoU (mean Intersection over Union) of 0.762 on
ScanNet dataset, which is currently one of the top methods
for semantic segmentation tasks, obtaining a better score than
Fully Convolutional Networks (FCN) used in [8]. This result is
coherent to the visual ones illustrated in Figure 4 where almost
all the different objects are well segmented. Furthermore, the
quantitative results obtained for the classes used to create the
layout are presented in Table II. Specifically, the classes that
mostly compose the layout, wall, and floor are the ones that
obtain higher results. For instance, in Figure 4, the window is
not correctly segmented, but it is detected as a wall, so it will
not have a heavy impact on the layout performance.



(a) 3D Reconstruction. (b) 3D virtualization obtained by VET framework.

Fig. 3: An example of the 3D reconstruction (a) and virtualization (b) of a scene from our own dataset.

TABLE II: mIoU for layout classes evaluated on ScanNet
dataset [11].

Classes Wall Floor Cabinet Door Window
mIoU 0.868 0.958 0.770 0.640 0.744

Moreover, Figure 4 also depicts the results obtained in the
layout estimation process, where it is estimated correctly, as
the different planes and corners are well detected.

Fig. 4: Semantic segmentation & layout results obtained from
3D reconstructed scene in Figure 3a.

In parallel, from the reconstructed scene (Figure 3a) it was
estimated the instances using Mask3D method. Particularly, it
obtains an Avg AP50 = 0.780 on ScanNet dataset, and an
Avg AP50 = 0.388 on ScanNet200 dataset. This quantitative
result is related to the ones obtained qualitatively in Figure
5, where the different 3D objects are segmented into different
classes and instances represented by colors. Specifically, the
classes detected in this scene are: bed, nightstand, cabinet,
shelf, chair and desk. These being some of the classes present
in the ScanNet200 dataset.

Moreover, using previous results, it was applied ScanNotate
method for CAD retrieval and 7-DoF pose estimation. This
novel method outperforms the results obtained by Scan2CAD
approach, as exposed in the original paper [19] using the scale,
translation and rotation differences, and a visual evaluation

Fig. 5: Instance segmentation result obtained from 3D recon-
structed scene in Figure 3a.

by experts. Figure 6 compares the results obtained by both
methods. In particular, it is seen that ScanNotate obtained a
better CAD retrieval result and also outperformed the pose es-
timation task. This could be related to the module incorporated
by ScanNotate that joins instances of the same class that are
similar and assign to that cluster the same CAD model ID.

Finally, using the results obtained from ScanNotate and
layout estimation approach, it is obtained the virtualization
depicted in Figure 3b from the 3D reconstructed scene in
Figure 3a. As could be seen in the virtualization, the objects
segmented by Mask3D are correctly replaced by the model
CAD most similar in the same position, orientation, and scale,
obtaining an accurate digitized scene.

After presenting the different steps performed in the vir-
tualization process and its corresponding results, regarding
computational cost, it is possible to obtain a full virtualization
using VET, after having performed the 3D reconstruction, in
an average of three and a half minutes, both with our own
dataset and ScanNet dataset. This time was performed using
a custom-built PC with an NVIDIA GeForce RTX 3060 and
an Intel Core i7 CPU, and may vary depending on the size of
the scene, and the number and types of objects present in it.

V. CONCLUSIONS

In conclusion, VET is a novel framework integrated into a
single application that automates the complete virtualization of
3D scenes using CV and DL methods. It is versatile, capable
of handling diverse indoor scenes and capable of working



Fig. 6: Comparison between 2 CAD retrieval and alignment methods using a ScanNet validation scene. From left to right:
ScanNotate and Scan2CAD results.

with 200 object classes. This approach implements most of
the current state of the art methods for each pipeline step,
generating an accurate virtualization of the 3D scene. This
framework has been qualitatively analyzed using a variety of
indoor scenes from the ScanNet dataset and our own.

Future work includes training Mask3D to segment walls
and floors, using these predictions to extract the layout in-
formation. Additionally, this framework could be extended to
outdoor scene, contributing to outdoor VR applications, which
remains a challenge. Finally, this framework will be applied
in a real use case for psychological treatment. Using a 3D
virtualization of a safe virtual world created with VET, the user
will experience new realities without feeling threatened, as
well as approaching traumatic or phobic situations gradually.
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