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Abstract—With application contexts ranging from psy-
chophysiology to neuromarketing, electroencephalography
(EEG)-based emotion recognition is a fundamental technology
for affective computing. In this context, EEG signals can
be processed via artificial neural networks (NNs) to achieve
accurate recognition of users’ emotions. Still, NNs are rarely
employed in real-world decision-making processes, since their
internal model works as a hardly trustable black box. A
NN’s reasoning can be explained in a human-comprehensible
manner by exploring its latent space to understand if some
domain knowledge is actually represented and exploited for
the classification. Those approaches assume that a trained NN
autonomously organizes its latent space according to some
domain concepts to process the data via human-like reasoning.
However, there is no guarantee that such an assumption
holds, since the latent space is not built for this aim. On
the other hand, forcing the organization of the latent space
(e.g. via contrastive learning) can result in poor recognition
performances due to information loss. To guarantee great
recognition performances and provide a domain-knowledge-
driven organization of NNs’ latent space, we combine the
well-known training procedure based on a categorical cross-
entropy loss with a supervised contrastive learning approach
for continuous values labels. The proposed approach (i) enables
the explanation of NN’s reasoning in terms of the importance
of high-level domain concepts in the final classification, and
(ii) results in a recognition performance comparable to or
better than the one achieved via an approach based solely on
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maximizing recognition. The proposed approach is tested on
the publicly available MAHNOB dataset.
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Contrastive Learning

I. INTRODUCTION

Affective computing is a comprehensive research domain
focused on investigating emotional and mental states by
analysing physiological signals. These approaches are in-
creasingly required thanks to their effectiveness in identify-
ing patterns associated with affective disorders (e.g., anxiety
and depression) [1], and the adoption of user-friendly, non-
intrusive, portable devices capable of collecting reliable
physiological data [2]. Emotions can be modelled through
a multidimensional space representation, known as the cir-
cumplex model of affect [3], comprising three dimensions:
valence (ranging from positive to negative feelings), arousal
(from mild to excited states), and dominance (from subtle to
engaging emotions). Emotions can also be categorized via
discrete basic emotions (joy, trust, fear, surprise, sadness,
disgust, anger, and anticipation) [4]. Each of these categori-
cal emotions is placed in a different space of the circumplex
model of affect.

When it comes to emotion recognition tasks using non-
invasive physiological data, electroencephalography (EEG)
is commonly employed due to its favourable balance be-
tween temporal and spatial resolution [5]. EEG signals
are typically collected by positioning a set of sensors (i.e.
channels) on the patient’s scalp, arranged according to stan-
dardized schemes such as the international standard pattern
10-20 [6]. According to a recent survey [7], the majority
(89.4%) of EEG-based emotion recognition studies extract
frequency domain features, e.g. using methods like Power
Spectral Density (PSD). These location-specific features can
be transformed into a tabular format, and associated with a
label for each instance in the classification process. Recent
studies have shown how, using a feature arrangement to
generate an image, it is also possible to represent the very
useful information of spatial proximity between electrodes in
the analysis [8]. This results in superior recognition perfor-
mances if combined with a classifier based on Convolutional
Neural Networks [9].

Despite the impressive recognition performances, the re-
sults provided via NNs are hardly employed in decision-
making real-world scenarios, since their internal model
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works as a black box [10]. To enable the trust in the
outcomes of a NN it is essential to offer some explana-
tions for its reasoning that can be easily understood by
professionals and decision-makers who lack a background
in machine learning (ML). Among the many explanation
strategies, exploiting the domain knowledge can provide the
most understandable explanations [11]. Indeed, this trans-
lates into the ability to understand if the NN is providing
“the right answer for the right reasons” [12] on a human-like
abstraction level, rather than via numerical representations
or measurements. For example, in the case of emotions, it
is possible to use concepts such as arousal, valence, and
dominance to understand how a NN classifier distinguishes
different emotions.

For this reason, the attention of the academic community
has recently focused on examining if and how the NNs’
reasoning can be tailored to resemble human decision-
makers by representing some domain knowledge in its inner
model [13]. To this aim, the latent space of the NNs can be
explored to understand how the NN processes each sample
to achieve the classification result [14]. For instance, in
domains related to image recognition, the latent space of
NNs in their first layers can represent low-level domain
elements such as textures and edges [15], while those in
the latest layers can represent higher-level domain concepts
like specific objects [16].

However, according to different posthoc analyses on
trained NNs [17], the information about a specific domain
concept can be scattered throughout the whole network
rather than triggering a specific part of the NN [18]. Given
the difficulties related to understanding if and which NN
nodes represent human-understandable concepts, the activa-
tion of a group of NN nodes can be linearly combined to
represent some predefined higher-level concepts [19]. For
instance, in [20] the authors propose a method to detect some
Concept Activation Vectors, i.e. vectors in the latent space of
an NN that are specifically chosen to align with predefined
or automatically discovered concepts. Still, most of those
approaches work under the assumption that a trained NN
“places” each domain concept in one easy-to-classify portion
of its latent space. However, since the latent space was not
explicitly built to have this property, there is no reason to
believe that the above assumption holds [17]. Rather than
relying on these assumptions, the latent space of an NN can
be constrained during its training to represent some domain
concepts [17]. For instance, in [21], the authors constrain
the NN model to represent some human-specified concepts;
however, since each concept is represented via one single
direction of the latent space, this may result in information
loss.

To organize the latent space without sacrificing the recog-
nition performance, in this study we propose an approach
based on a combination of the well-known training proce-
dure employing a categorical cross-entropy and a supervised
contrastive learning approach for continuous values labels.

Specifically, the NN is trained in an end-to-end fashion to
aggregate (separate) instances belonging to similar (differ-
ent) concepts (i.e. arousal, valence, or dominance values)
in its latent space while keeping great recognition perfor-
mance. The proposed approach (i) is specifically designed to
organize the latent space of the NN in a domain-knowledge-
driven manner, and (ii) allows measuring the importance of
each domain concept for the classification as an explanation
for its reasoning.

II. MATERIALS AND METHODS

A. Experimental data

In this study, we used the publicly available MAHNOB
dataset, which involved collecting physiological signals from
a group of healthy volunteers who watched emotional
videos. The evaluation of emotions was based on the cir-
cumplex model of affect, which defines emotions in a three-
dimensional space: arousal, valence, and dominance. Arousal
measures the intensity of the feeling, valence measures the
pleasantness of the feeling, and dominance measures the per-
ceived control over the feeling. The dataset consisted of data
from 27 healthy participants, whose physiological signals
were collected via a EEG helmet featuring 32-channel and
256 Hz sampling rate. Participants rated each video on the
scales of valence, arousal, and dominance and assigned a
label corresponding to the value of the categorical emotion
perceived. All participants provided informed consent, as
documented in the original paper that presented the dataset.
The dataset can be accessed at https://mahnob-db.eu/hci-
tagging/.

B. EEG Signal preprocessing

Extensive details on the performed EEG signal prepro-
cessing steps can be found in [8]. Briefly, to obtain clean
EEG signals for the classification task, we implemented
a series of processing steps, including frequency filtering,
artefact rejection, removal of eye and cardiac artefacts,
interpolation of contaminated channels, and average re-
referencing. The EEG power spectral density was extracted
using Welch’s method with a Hanning window. The PSD
time series were integrated into four frequency bands: theta
(ω), alpha (ε), beta (ϑ), and gamma (ϖ).

C. Arrangement of spatial features into an image

To organize the input features representing each frequency
band and EEG channel, a sparse matrix was created using
the 10-20 EEG electrode placement representation. This
arrangement scheme has been effective in allowing CNN
models to leverage the spatial relationship between sensors,
resulting in improved performance in emotion recognition
tasks (see further details in [8]).

D. NN-Based Architecture

In this section, we describe a novel neural network archi-
tecture for emotion recognition. Our architecture is designed
to effectively extract meaningful features from input images



Fig. 1: Representation of the 2→2 block matrix as a greyscale
image.

exploiting a supervised contrastive learning methodology
and leverage them for accurate classification.

The architecture starts with two convolutional layers,
each followed by a Rectified Linear Unit (ReLU) activation
function to introduce non-linearity.

The convolutional layers are followed by a max-pooling
layer to downsample the feature maps and reduce the spatial
dimensions. Next, we employ a flattening layer to convert
the 2D feature maps into a 1D vector.

This allows us to feed the extracted features into a fully
connected layer. The subsequent layer, which we refer to as
the Contrastive Layer (CL), serves two purposes: it applies a
contrastive learning approach, which encourages the model
to learn an input representation resembling the circumplex
model of affect in an Informed Machine Learning fashion;
it performs normalization on the output elements to ensure
that they are in a normalized form.

The CL forces the network to exploit the circumflex space
related information while predicting categorical emotions.
In this way the network can be viewed as separated in
two parts: in the first it learns a new representation of the
data in which the enhanced with the arousal, valence and
dominance information; in the second the network use this
new representation to classify the target emotion. Hence,
it first represents the input data in a new space where
its position resembles the one expressed in the circumplex
space, and then it uses this new representation to classify
human emotions. This procedure simulate the human rea-
soning while classifying emotions inside a neural network,
enhancing its robustness and understandability.

Following the contrastive layer, we introduce two fully
connected layers for classification purposes. The first fully
connected layer uses a ReLU activation function, and the
second instead utilizes a Softmax activation function, pro-
viding probabilities for each categorical emotion (e.g. happy,
angry, etc.). The final layer of the architecture has a number
of neurons equal to the number of emotion categories in
the MAHNOB dataset, which is 9. This layer allows the
model to output the predicted probabilities for each emotion
category.

To train our model, we employ a training strategy that
involves training for 1000 epochs with early stopping and
checkpointing. We evaluate the best classification perfor-

mance on the validation set using a nested Monte Carlo
5-fold cross-validation approach, ensuring robust evaluation
and preventing overfitting.

E. Loss Function: CCL and SCL
The loss function used in our neural network architec-

ture combines Categorical Crossentropy Loss (CCL) and
Supervised Contrastive Learning (SCL). The framework was
implemented in PyTorch.

1) CCL: The CCL measures the discrepancy between the
predicted output and the ground truth categorical labels. Let
yi represent the ground truth categorical label for input i,
and let pi represent the predicted output probabilities for
each emotion category. The CCL is computed as follows:

CCL(yi, pi) = ↑
∑

j

yi,j log(pi,j)

2) SCL: The SCL aims to learn a representation in the
output of the Contrastive Layer that preserves the distances
between samples in the circumplex space. In the circum-
plex model of affect, emotions are represented in a three-
dimensional space: arousal, valence, and dominance. We
want the projection of samples i in the Contrastive Layer,
represented by ci, to preserve the distances between samples
in the circumplex space, represented by yi = (ai, vi, di).

To calculate the SCL, we define an anchor point a, and
select two samples i and j from the batch for mining. The
loss is given by:

SCL(a, i, j) =
(
log

(
d(ca, ci)

d(ca, cj)

)
↑ log

(
d(ya, yi)

d(ya, yj)

))2

Here, ca represents the projection of the anchor point a,
d(ca, ci) is the Euclidean distance between the projections
of samples a and i, and d(ya, yi) is the Euclidean distance
between the circumplex representations of anchor a and
sample i.

Mining strategies can be employed to select the samples
i and j. Mining is one of the most important aspect of
contrastive learning and metric learning [22], which is the
process of finding the best samples to train on. The easiest
way to determine train samples in contrastive learning is by
means of randomly chosen positive and negative pairs of
objects [23], i.e. positive elements refers to element of the
same class of the anchor point a and negative to sample of
different class. When it comes from contrastive learning for
continual labels, the problem is even more severe, since pos-
itive elements can be not properly represented in the training
batch. For this reason, authors in [24] propose to mine the 2-
nearest samples of the anchor point considering their actual
distance in the latent space, i.e d(ca, ci), d(ca, cj). However,
this approach is highly sensitive to the ϱ parameter, which
ensure that the denominator d(ca, cj) does not become 0.
Moreover, by focusing on the nearest sample, the approach
tends to enhance the formation of micro-cluster in the latent
space instead of building a homogeneous space representa-
tion. In our approach, we use the farthest samples for mining,
aiming to encourage more global coherence in the space.



By selecting distant samples, we ensure that the network
focuses on capturing broader relationships and patterns in
the circumplex space rather than fine-grained clusters.

The overall loss function is obtained by combining the
CCL and SCL, weighted by parameters ε and ϑ, which are
both set to 0.5 to equally balance the importance of each
component. The combined loss is calculated as:

CombinedLoss = εCCL + ϑSCL

By optimizing this combined loss function during training,
our model learns to accurately classify emotions while
preserving the distances in the circumplex space, leading
to improved emotion recognition performance.

III. RESULTS AND DISCUSSION

In this section, we detail the experimental setups and
the results obtained from our architecture to demonstrate
the effectiveness of our multi-objective loss function in
simultaneously optimizing the conceptual representation of
the latent space and the model’s performance. Our goals are
twofold:

(1) Injecting (conceptual-)knowledge into the model: We
aim to align the data representation with the circumplex
space, which should either increase or maintain classification
performance compared to training the model solely with
CCL. To evaluate this, we compared the accuracy of our
proposed model with a baseline model obtained by replicat-
ing the proposed neural network architecture but trained only
with CCL. Similarly, we also compared our approach with
two state-of-the-art methods for conceptual representation
in latent spaces: an updated version of Conceptual-Space-
Embedding (CSE) and another contrastive learning approach
for continuous label representation. The latter approach,
unlike our proposed method, utilizes a mining mechanism
based on the nearest samples rather than the farthest samples.

(2) Assessing the effectiveness of different architectures in
representing and utilizing concept-related information during
classification: inspired by Concept Activation Vector (CAV)
approach, we extract information on how well a projection
in the latent space can be recognized as representing high
or low arousal, valence, or dominance. The CAV score is
computed using a linear classifier with softmax activation
and two output neurons, where one predicts the “high” class
and the other predicts the “low” class. For each concept (e.g.,
arousal, valence, dominance), we compute the CAV score
by taking the absolute difference between the probability
scores for the “high” and “low” classes. This represents
the separability of the concept in the latent space. Higher
CAV scores indicate a more distinct separation between the
classes, i.e. arousal, valence and dominance, in the latent
space.

The CAV scores at the CL (Contrastive Layer) level
represent the effectiveness of the architecture in capturing
and representing the underlying concept in the latent space.
These scores indicate how well the model has learned to
encode the information related to the concept of interest

(e.g., arousal, valence, dominance) in the first part of the
network.

On the other hand, the CAV scores at the DENSE and
CLASS layers provide insights into how effectively the
architecture utilizes the concept-related information during
the classification task. These scores indicate to what extent
the model takes advantage of the encoded concept informa-
tion in the subsequent layers of the architecture, leading to
improved classification performance.

For example, if we observe high CAV scores at the
CL level but relatively lower scores at the DENSE and
CLASS levels, it suggests that the architecture captures the
concept well in the latent space but it is not exploiting that
information during the classification process. Conversely,
high CAV scores at both the CL and DENSE/CLASS levels
indicate that the architecture not only captures the concept in
the latent space but also that it use the concept information
during classification.

Table I reports the accuracy values of the analyzed models
and their corresponding CAV scores for arousal, valence,
and dominance at three levels where the contrastive loss is
applied (CL, DENSE, CLASS).

Our approach achieved a f1-score of 0.89, demonstrating
its strong classification performance also in comparison with
the state-of-the-art literature [9]. The CAV scores at the
CL level indicate that our architecture effectively captures
the concept information, with high arousal, valence, and
dominance scores of 0.94, 0.95, and 0.96, respectively.
These results are consistent with the other approaches,
which exhibit lower classification performances in terms
of f1-score but similar conceptual representation metrics at
the CL layer. This suggests that our approach successfully
incorporates the circumplex space information and utilizes
it effectively to improve classification performance. In con-
trast, both the CSE and Nearest Mining approaches yield
lower classification performances compared to the baseline
model, which lacks concept information. This implies that
the inclusion of concept information in these cases decreases
the classification performance.

The CAV score for the DENSE and CLASS layers shows
the utilization factor of concept information for the different
models. Comparing these scores with the baseline provides
valuable insights into how the network incorporates concepts
for classification tasks, i.e. since the baseline network is not
informed with concepts information its concepts utilization
factor should be taken as lower bound or lower reference
point.

Hence, we can define the utilization factor CUFij (·) of
the network i at layer j of the concept (·) as:

CUFij (·) =
CAVij (·)

CAVbaselinej (·)
(1)

CUF is higher than 1 if the utilization of the concept is
higher than the one exploited by the baseline model. Table II
shows the concept utilization factors of the different models
at the DENSE and CLASS levels.



Baseline Our Approach Nearest Mining

Fig. 2: Principal components plot of the contrastive layer of the baseline, our method, and nearest mining, for the Arousal
concept. The colours indicate the arousal intensity from 1 to 9.

TABLE I: Average accuracy and CAV scores for different models at different levels

Accuracy CAV Arousal CAV Valence CAV Dominance
F1-Score CL DENSE CLASS CL DENSE CLASS CL DENSE CLASS

Our Approach 0.89 0.94 0.85 0.68 0.95 0.91 0.89 0.94 0.83 0.68
Baseline 0.88 0.86 0.7 0.68 0.92 0.89 0.89 0.87 0.79 0.68
Nearest Mining 0.87 0.97 0.93 0.68 0.98 0.96 0.89 0.96 0.93 0.68
CSE 0.77 0.97 0.98 0.97 0.98 0.98 0.98 0.98 0.98 0.97

TABLE II: Concepts Utilization Factors for different models
at different levels i.e. DENSE (D) and CLASS (C)

Arousal Valence Dominance
D C D C D C

Our Approach 1.2 1.0 1.0 1.0 1.1 1.0
Nearest Mining 1.3 1.0 1.1 1.0 1.2 1.0
CSE 1.4 1.4 1.1 1.0 1.2 1.4

As demonstrated by Table II and Table I, there exists a
trade-off between concept utilization and classification per-
formance. Analysing the CLASS layer, we can observe that
the CUF of the CSE model consistently surpasses that of
the other approaches. However, it achieves lower recognition
performance in terms of F1-score. This suggests that the CSE
model excessively focuses on concept information, leading
to a decline in recognition performance. This trade-off is
one of the primary limitations discussed by the authors when
proposing the CSE model [11]. Similar considerations can
be made when considering the DENSE layer and comparing
the CSE model and the Nearest Mining model with our
approach.

Our approach outperforms the other models in terms of
concept utilization and classification performance. By com-
paring the utilization factors in Table II and the recognition
scores in Table I, it is evident that our approach strikes a
better balance between concept utilization and classification
accuracy.

In the CLASS layer, our approach achieves comparable
concept utilization factors compared to the CSE and Near-
est Mining models. However, it consistently outperforms
them in terms of recognition performance, as indicated by
higher F1-scores. This indicates that our approach effectively
leverages the concept information without compromising
classification accuracy, unlike the other models.

Similarly, when considering the DENSE layer, our ap-
proach achieves comparable concept utilization factors while
maintaining or surpassing their recognition scores. This
highlights the effectiveness of our approach in effectively

utilizing concept information at different levels of the net-
work architecture.

Overall, our approach strikes a favourable balance be-
tween concept utilization and classification performance,
making it a preferable choice over the other models. It
maximizes the utilization of concept information while
maintaining or even improving the recognition accuracy,
providing a more robust and efficient solution for the task
at hand.

Figure 2 presents a grid of 3 subfigures, each figure rep-
resents results obtained with a different model: the baseline
model trained solely with the CCL loss, the model based
on nearest mining, and the proposed model. Each subfigure
displays a scatter plot of the first two principal components
of the features extracted by the Contrastive Layer. The
colours of the points in the plots correspond to the scale
value for the Arousal concept. Clearly, the baseline model,
lacking any conceptual information about the circumplex
space, does not impose any order on the data, resulting in
a random distribution for all classes. On the other hand,
both approaches that leverage contrastive learning success-
fully provide the model with conceptual information. Our
approach demonstrates a more homogeneous and coherent
ordering, closely aligned with the circumplex space, as it
prevents the formation of micro-clusters in the data, which
instead can be found in the Nearest Mining plot. Also, our
approach results in a smooth and progressive representation
of the different grades of Arousal, Valence, and Dominance.

In summary, Figure 2 visually illustrates the effectiveness
of our proposed approach and the comparative performance
of the different models in leveraging conceptual information
from the circumplex space. The plots clearly demonstrate
that our approach successfully incorporates this information,
resulting in a more consistent and ordered data representa-
tion. This provides valuable insights into the impact of our
method on the representation and utilization of conceptual



information during the classification process.
IV. CONCLUSION

In this study, we have introduced a novel loss function
aimed at incorporating domain knowledge, specifically the
circumplex space-derived information, into neural networks
for a multiclass categorical emotion recognition task. The
proposed methodology empowers the network to extract
emotional information related to arousal, valence, and dom-
inance dimensions within its structure, enabling the recogni-
tion of the perceived emotional category by the subject and,
thus, simulating human reasoning.

The proposed approach has demonstrated significant im-
provements in emotional recognition performance compared
to all other tested methods. Moreover, it effectively learns
the most optimal latent space representation that embeds
information from the circumplex space, as evidenced by
both the PCA components plots and the CAV scores asso-
ciated with the concept distribution. Furthermore, this study
introduces a new metric, the Concept Utilization Factor
(CUF), which quantifies the extent to which concept-derived
information is extracted by a concept-aware neural network
within its layers, in comparison to a baseline model that lacks
concepts-awareness. Our approach achieves the best trade-
off between CUF and target-label recognition performance.

Overall, this research presents a promising direction for
emotion recognition tasks by effectively leveraging domain
knowledge and enriching the neural network’s understanding
of emotions through the circumplex space-derived informa-
tion.

Moreover, it is essential to emphasize how the adoption
of such a latent space ordering approach can significantly
enhance explainable artificial intelligence (XAI) techniques
applied to these types of neural networks. By incorporating
domain knowledge and leveraging the circumplex space-
derived information, our methodology not only improves
emotion recognition performance but also enhances the
interpretability of the model’s decisions. The ability to trace
emotional representations back to their underlying concepts
opens new possibilities for understanding the neural net-
work’s decision-making process in emotional recognition
tasks. We believe that this work lays the foundation for future
studies in XAI, encouraging researchers to explore and refine
explainability methods within the context of concept-aware
neural networks. REFERENCES
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