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The study of functional brain–heart interplay has
provided meaningful insights in cardiology and
neuroscience. Regarding biosignal processing,
this interplay involves predominantly neural and
heartbeat linear dynamics expressed via time and
frequency domain-related features. However, the
dynamics of central and autonomous nervous
systems show nonlinear and multifractal behaviours,
and the extent to which this behaviour influences
brain–heart interactions is currently unknown. Here,
we report a novel signal processing framework
aimed at quantifying nonlinear functional brain–
heart interplay in the non-Gaussian and multifractal
domains that combines electroencephalography
(EEG) and heart rate variability series. This
framework relies on a maximal information
coefficient analysis between nonlinear multiscale
features derived from EEG spectra and from an
inhomogeneous point-process model for heartbeat
dynamics. Experimental results were gathered from
24 healthy volunteers during a resting state and
a cold pressor test, revealing that synchronous
changes between brain and heartbeat multifractal
spectra occur at higher EEG frequency bands and
through nonlinear/complex cardiovascular control.
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We conclude that significant bodily, sympathovagal changes such as those elicited by cold-
pressure stimuli affect the functional brain–heart interplay beyond second-order statistics,
thus extending it to multifractal dynamics. These results provide a platform to define novel
nervous-system-targeted biomarkers.

This article is part of the theme issue ‘Advanced computation in cardiovascular physiology:
new challenges and opportunities’.

1. Introduction
Several biochemical, anatomical and functional links form dynamic connections between the
central nervous system (CNS) and the autonomic nervous system (ANS), with these anatomical
and functional connections referred to as the central autonomic network (CAN) [1,2].

Information relating to CAN processes sent by higher-order cortex regions is influenced
by the environmental context together with afferent signals from visceral receptors (i.e.
pressure, chemical, mechanical and temperature), and manifests as various reflexes and
autonomic responses [1,3]. Considering a variety of physical interactions between the
cerebral and cardiovascular systems, numerous studies have attempted to characterize CAN
activity and the associated functional brain–heart interplay (BHI). In particular, focusing
on electroencephalography (EEG) and heart rate variability (HRV) series, several studies
have investigated CAN-related activity through linear and nonlinear approaches, including
information transfer [4,5], nonlinear convergent cross mapping [6], maximal information
coefficient [7,8], joint symbolic analysis [9], Granger causality indices [10,11] and ad hoc functional
models [12,13].

Although nonlinearity and non-stationarity in physiological systems dynamics can be due
to interactions among system subcomponents [14], heartbeat and EEG dynamics also exhibit
multifractal (MF) behaviour [15–19]. Specifically, heartbeat and EEG series have transient and
local non-Gaussian structures as well as multiple local singular behaviours that exceed self-
similarity [15,18,20,21], each of which can be characterized using a specific Hurst exponent
H. To describe these singular behaviours comprehensively and identify transient self-similar
processes, a collection of exponents H = h(t) and a multifractal spectrum D(h) are required. Different
methodologies have been proposed to estimate the MF spectrum: MF detrended fluctuation
analysis [22], the wavelet transform modulus maxima method [23], the wavelet leader MF
formalism [24] and its generalization using p-leaders [25,26]. The wavelet p-leader MF formalism
leads to a non-Gaussian expansion for characterizing the temporal dynamics. Recently, we
exploited this formulation to describe various brain and heartbeat dynamics during a cold pressor
test (CPT) [27–30].

Regarding cardiac autonomics, a CPT evokes a strong sympathovagal change following the
immersion of a distal limb (e.g. hand or foot) in iced water (approx. 4◦C). In particular, CPTs
provoke an increase in sympathetic nerve activity and plasma norepinephrine within the muscles,
which is thought to be driven by nociceptive fibres, leading to heightened blood pressure and
an increase in the concentration of venous norepinephrine [31,32]. Studies on healthy subjects
have reported that CPTs increase both blood pressure and vessel peripheral resistance [31].
Furthermore, it has been argued that heart rate stationarity during CPTs results from the sequence
of a decreasing phase following an initial increase [32]. Although the use of CPTs, both in clinics
and research, was previously limited purely to sympathetic elicitation [32], more recent analyses
of HRV fractal features demonstrated cardiac autonomic co-activation within the vagal and
sympathetic systems [27,33]. Regarding EEG dynamics, CPTs provoke changes in the frontal lobes
that are caused by oscillations in the δ and θ bands [28], as well as posterior-parietal activity in
the α band, and peripheral bilateral temporal regions in the β range [34]. With respect to a resting
state in healthy subjects, CPTs are associated with a reduction in MF features both for EEG [28]
and heartbeat dynamics [27].
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While MF behaviour has been characterized in brain and cardiovascular systems separately,
the eventual and possibly synchronized co-occurrence of MF changes in brain and heartbeat
dynamics has yet to be investigated, and could highlight the complexity of the BHI phenomenon.
Therefore, in this study, we describe a novel methodological framework to extend the study
of functional BHI to the MF domain. The proposed signal processing framework combines MF
features extracted at different time-scales from brain and heartbeat dynamics, while the maximal
information coefficient (MIC) is used to quantify the related functional BHI. The performance
of the framework is evaluated using real EEG and heartbeat data gathered from 24 healthy
participants during a CPT session. Preliminary results of the proposed study have been recently
reported in [35].

2. Material and methods

(a) Nonlinear multiscale (mutifractal-inspired) representations
Multiscale representations are classically achieved by computing wavelet coefficients, dX(j, k) =
〈ψj,k|X〉, obtained by comparing through inner product the signal or time series to analyse, X(t),
against a collection of dilated and translated templates ψj,k of a reference pattern called the
mother wavelet ψ0(t) (cf. e.g. [36]). These multiscale representations have been classically used
to characterize scale-free temporal dynamics in biomedical applications (cf. e.g. [18–20,37,38]).
Notably, self-similarity, a reference model for scale-free dynamics, can be assessed and quantified
via a power-law behaviour with respect to scales of the so-called wavelet spectrum (cf. e.g. [39]):

SdX (j, 2) = 1
nj

nj∑
k=1

|dX(j, k)|2 � K2j2H, (2.1)

with nj the number of wavelet coefficients available at scale 2j, H the self-similarity exponents, and
� indicating that the sample moment has a power law behaviour with exponent 2H for a large
range of scales 2j. Analogous to the Fourier transform, SdX (j, 2) estimates the energy distribution
in the frequency domain and, consequently, the Hurst parameter H refers only to linear properties
of the data [37,39].

Multifractality has also been used to model scale-free dynamics beyond energy repartitions,
and hence beyond the second-order statistics. To assess multifractality in temporal dynamics,
it has been shown that a new multiscale representation must be built by replacing wavelet

coefficients with novel multiscale quantities referred to as the wavelet p-leaders �(p)
X . These

quantities are defined as local �p norms of wavelet coefficients in a narrow temporal
neighbourhood over all finer scales:

�
(p)
X (j, k) =

(
2j

∑
λ′⊂3λj,k

2−j′ |dX(λ′)|p
)1/p

, (2.2)

with λj,k = [k2j, (k + 1)2j) and 3λj,k = ⋃
m{−1,0,1} λj,k+m [24–26]. Multifractality can be quantified by

considering that wavelet p-leaders moments of positive and negative orders q (in contrast with
the second-order moments only as in equation (2.1)) behave as power laws with respect to:

S
�

(p)
X

(j, q) = 1
nj

nj∑
k=1

|�(p)
X (j, k)|q � Kq2jζ (q). (2.3)

The collection of scaling exponents ζ (q) for positive and negative q can be associated with the
multifractal spectrum D(h) of the signal X, and thus describes fine details of its temporal dynamics.

A first limitation in the use of these scaling exponents ζ (q) lies in the fact that
they mix-up linear and nonlinear temporal dynamics. To disentangle nonlinear dynamics

from linear dynamics, it has been proposed to rewrite S
�

(p)
X

(j, q) = (1/nj)
∑nj

k=1 |�(p)
X (j, k)|q as

S
�

(p)
X

(j, q) = (1/nj)
∑nj

k=1 exp(q log |�(p)
X (j, k)|) thus motivating the use of the cumulants of log-leaders
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Table 1. Non-Gaussian expansion indices.

notation moments qi cumulants Cm active in (2.5)

LQ1≡ L(2)q (j) (0.25, 2) m≥ 2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

any departure from Gaussian
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

LQ2≡ L(2)∗q (j) (−2, 2) m= 2, 4, . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

symmetric properties
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

LQ3≡ L(4)q (j) (0.25, 0.75, 2.5, 2)) m≥ 3
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

non-lognormal non-Gaussian
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[24], defined as
C(p)

m (j) ≡ Cumm log
(
�

(p)
X (j)

)
. (2.4)

Indeed, for scale-free dynamics, these cumulants behave as C(p)
m (j) = c0

m + cm log(2j), and it can
further be shown that C1(j) and c1 are associated with the location of the maximum of multifractal
spectrum, while C2(j), C3(j) and C4(j) can be associated with its width, asymmetry and flatness
[24]. This indicates that C1(j) quantifies the linear (or second-order-statistics) temporal dynamics
of the signal, while Cm(j) for m ≥ 2 are related to higher order statistics and nonlinear dynamics.
The cumulants Cm(j) for m ≥ 2 quantify departures from Gaussianity as a function of scales 2j for

the distributions of the log |�(p)
X (j, k)|) which are thus used as quantifiers of the nonlinear temporal

dynamics of the signal X.
A second limitation further stems from assuming exact scale-free dynamics and power-law

behaviours of these statistics as a function of the scales. Thus, instead of assuming a priori
such power laws and extracting scaling exponents ζ (q) or cm, one can use such multiscale
representations as a function of scales 2j.

To account for both limitations, focusing on nonlinear dynamics only and by not assuming
a priori exact scale-free dynamics, it has been proposed to construct new multiscale quantities
that focus on some aspects of the non-Gaussianity of the data, L2P

q (j), from log-cumulants beyond
order 1 [40]:

L2P
q (j) =

∞∑
m=2

Cm(j)

∑P
i=1 qm−1

2i−1 − qm−1
2i

m!
. (2.5)

Because C1(j) does not enter in (2.5), L2P
q (j) defines a purely nonlinear data feature. In addition,

the choice of the moments qi allows us to tune the sensitivity of the multiscale representation
to different departures from Gaussianity (see [40] for further details), because they effectively
act as weights for the cumulants at orders as in equation (2.5). Table 1 shows a list of the three
choices, defining the L2P

q (j) used in this study: LQ1 ≡ L(2)
q (j) is sensitive to any form of departures

from non Gaussianity and involves positive moments only, thus all cumulants are contributing to
(2.5), hence active; LQ2 ≡ L(2)∗

q (j) also involved two different moments, yet positive and negative,
so that the resulting multiscale representation is sensitive to departures from Gaussianity that are
symmetric only (only even cumulants contribute to (2.5)); LQ3 ≡ L(4)

q (j) combines four moments in
such a way that the second cumulant C2(j) does not contribute, so that LQ3 focuses on departures
from Gaussianity not well modelled by long-normality (only cumulants for m ≥ 3 contribute to
(2.5)). Further details are reported in [40].

(b) Derivation of electroencephalography power spectra
EEG series were preprocessed following the so-called HAPPE procedure, described in [41].
Briefly, from the 128 original electrodes, the most peripheral 38 channels were discarded, leaving
90 electrodes, to avoid overlearning in the following independent component analysis (ICA)
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[41]. A bad-channel rejection was applied to derive the normed joint probability of the average
logarithmic power in the range of 1–125 Hz, with the actual rejection applied to those channels
external to the 1% tails of the distribution. The removed channels were subsequently spherically
interpolated, thereby exploiting neighbouring EEG series. Next, EEG signals were then band-pass
filtered between 0.5 Hz and 100 Hz; the electrical noise at 50 Hz and its first harmonic was rejected
by applying a multitaper regression method [41]. Artefact recognition and correction was then
performed for the EEG series using a wavelet-enhanced ICA algorithm, which focuses on eye-
or muscle-related artefacts in the recording. Further artefacts were recognized using a machine-
learning-based algorithm for analysing independent components [41]. Following this, the EEG
series were re-referenced to the time-varying common average among all electrodes. Eventually,
all time series were visually inspected by an expert operator.

For each EEG electrode, the power spectral density (PSD) was then estimated by implementing
the Welch method (with 2 s Hamming window and 0.25 s moving step); thus, the resulting time-
frequency representation was sampled at 4 Hz. The PSD time course was then filtered within the
five standard frequency bands: δ ∈ [1 − 4], θ ∈ [4 − 8], α ∈ [8 − 12], β ∈ [12 − 30] and γ ∈ [30 − 70]
(all expressed in Hz). Consequently, for each of the 90 selected EEG channels (ch), we ended up
with five time series (one for each frequency band): Xν,ch(th) = PSDν,ch(th), where th is the time
instant on which the sliding Hamming window is centred and ν ∈ δ, θ ,α,β, γ .

(c) Point-process model for heartbeat dynamics
Heartbeat dynamics series were derived from standard electrocardiogram (ECG) processing.
The Pan–Tompkins algorithm was implemented to locate the R-peak events temporally, and
algorithmic and physiological artefacts were identified and corrected by employing point-
process-based statistics [42].

In previous studies, we demonstrated the crucial role of heartbeat preprocessing in MF
estimation and found that inhomogeneous point-process models perform better than commonly
used non informative interpolations [27,38]. The point-process (PP) framework defines the
probability of a heartbeat event in the continuous-time domain. Such a probability function
accounts for the instantaneous estimation of features that are appropriate for short-time
physiological variations. Formally, defining t ∈ [0, T], the observation period, and 0 ≤ u1 < · · ·<
uk < uk+1 < · · ·< uK ≤ T as the R-wave event times, one can define N(t) = max{k : uk ≤ t} as the
sample path of the related counting process. Extracting its derivative (dN(t)) defines a continuous-
time indicator function, which equals 1 (dN(t) = 1) when a ventricular contraction event is
detected, and is null (dN(t) = 0) otherwise. Defining Ht = (uj, RRj, RRj−1, . . . , RRj−M+1) as the
sequence of events, the PP framework defines an inverse Gaussian probability density function
(PDF) for the time t − uj until the next ventricular contraction [43]. This is described by the
following mathematical formulation:

f (t|Ht, ξ (t)) =
[

ξ0(t)
2π (t − uj)3

]1/2

× exp

{
−1

2

ξ0(t)[t − uj − μRR(t,Ht, ξ (t))]2

μRR(t,Ht, ξ (t))2(t − uj)

}
, (2.6)

where j = Ñ(t) is the index of the previous R-wave preceding time t, ξ (t) is the vector of
the parameter time course, μRR(t,Ht, ξ (t)) is the first-order moment (mean) of the PDF, and
ξ0(t)> 0 is the inverse Gaussian PDF shape parameter [43]. The function f (t|Ht, ξ (t)) represents
the probability of a heartbeat occurring at time t, based on the knowledge that the previous
heartbeat occurred at time uj; thus, μRR(t,Ht, ξ (t)) can be considered as the expected time until
the following heartbeat occurs. The formulation f (t|Ht, ξ (t)) as a time-varying inverse Gaussian
PDF is motivated by a resemblance to the physiological behaviour and by goodness-of-fit
comparisons [43].

In this study, we used the same signal processing framework described in [44,45]. Briefly,
heartbeat dynamics were processed to derive instantaneous series defined in the time, frequency
and nonlinear/complex domains; we derived instantaneous linear estimates in the time domain
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as first- (mean) and second-order (variance) moments of the PDF (e.g. σ 2
RR) [43], as well as

instantaneous frequency-domain estimates based on the linear power spectrum. Following the
mathematical details reported in [44], it is then possible to obtain the instantaneous spectral
power in the low-frequency (LF = 0.05–0.15 Hz) (powLF) and high-frequency (HF = 0.15–0.5 Hz)
(powHF) bands. Furthermore, the instantaneous LF and HF power ratio is used as a feature
linked to the sympathovagal balance (LF/HF). Third, aiming to characterize heartbeat dynamics
beyond the second-order moment, higher-order spectra (HOS) were derived to account for phase
relations among the spectral components [46]. Formally, HOS are defined as statistics moments
and higher-than-third-order cumulants, which can be used to study and detect phenomena that
overcome classical assumptions of linearity, stationarity and Gaussianity [44,46]. HOS generally
represent an analysis framework that is virtually extensible to any Nth-order statistics. In this
study, we extracted the most commonly used HOS estimate, which is the third-order spectrum
(also referred to as the bispectrum), by exploiting the mathematical formulation proposed in [44]
as it allows for a dynamical estimation. Following this approach, we integrated the bispectrum
in three different areas: on both dimensions in the LF range (obtaining LL), on both dimensions
in the HF range (obtaining HH), and in the area corresponding to the LF range on the x-axis
and the HF range on the y-axis (obtaining LH). Fourth, to account for the complex dynamics
of the cardiovascular system, we extracted two additional features: the Lyapunov exponent
(Lyap) in a time–varying shape, which follows the formulation proposed in [47] and exploits a
cubic autoregressive formulation, and a sample entropy estimation pSamEn embedded in the
inhomogeneous PP nonlinear framework [44]. We determined the optimal model orders using
the Kolmogorov–Smirnov (KS) statistics in the post-hoc analysis [43], and set M = 9.

Finally, all PP-derived features were resampled at 4 Hz.

(d) Maximal information coefficient
The MIC quantifies the linear and nonlinear dependencies that exist between a pair of samples.
It descends directly from the scatterplot of the two series being coupled (x and y) [48]. Indeed,
a grid, comprising any number of rows and columns, can be superimposed on the scatterplot.
Considering all the possible partitions of such a grid, we form the ensemble Gnx×ny , where nx

and ny are the numbers of rows and columns, respectively; the algorithm estimates the mutual
information (Ig) associated with all elements g ∈ Gnx×ny and extracts the maximum among Gnx×ny :

mnx×ny =
max {Ig}
g∈Gnx×ny

log min{nx, ny} . (2.7)

Then, the MIC is derived as the maximal mnx×ny over all possible pairs (nx, ny). Another possible
estimation of the MIC was found to be MIC(x, y) = max

nxny<B
{mnx×ny}, with B empirically defined as

B = n0.6 (see [48] for a more in-depth explanation).
We selected the MIC, as opposed to other measures of dependence (e.g. Pearson linear

correlation coefficients), as it allows for the quantification of a wider genre of dependencies (linear
and nonlinear) [48], and has been used before in BHI estimation studies [7,8].

(e) Coupled brain–heart multifractal quantities
In previous studies, we made the following observations:

—Both the brain and the cardiovascular systems show intrinsic MF dynamics [27,28],
—MF features derived from heartbeat dynamics are more reliable when a point-process model

is applied [27],
—The MIC is a reliable tool for assessing linear and nonlinear coupling between CNS and ANS

dynamic series [7,8].
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HRV
point-process

extracted features
at 4 Hz for each

PP feature

multifractal analysis
extracts five features at

nine time scales

Figure 1. Schematic of the HRV signal processing procedure. Point-process extracts linear, nonlinear, bispectral and complexity
features. (Online version in colour.)

PSD at 4 Hz
for each band
and channel multifractal analysis

extracts five features
at nine time scales

d (1–4 Hz)

q (4–8 Hz)
a (8–12 Hz)
b (13–30 Hz)
g ( > 30 Hz)

Fp1 Fp2

F7
FT7

T7A1

F3

P7

O1

P3
CP3

C3
FC3

Fz F4
FC4

C4
CP4

P4 P8

TP8
A2T8

F8

FT8FCz
Cz

CPz

Pz

Oz O2

TP7

Figure 2. Schematic of the EEG signal processing procedure. (Online version in colour.)

Building upon these experimental findings, we devised a novel processing pipeline that combines
this knowledge with the aim of studying BHI in the MF domain and avoiding making a strong
hypothesis on the BHI dynamics.

The procedure followed for the heartbeat analysis is summarized in figure 1. Similarly, figure 2
illustrates the procedure applied in the EEG series analysis. Both the EEG–PSD series and the
HRV-derived feature time courses require resampling at 4 Hz in order to provide a coherent
comparative analysis.

The processing pipeline continues with the implementation of the MF analysis. We extracted
the first- and second-order cumulants from the MF spectrum (i.e. C1(j, s) and C2(j, s)) and
three non-Gaussian expansion terms (namely, LQ1(j, s), LQ2(j, s), and LQ3(j, s)), at all time
scales permitted by the length of the signals (i.e. j = 1, . . . , 9 corresponding to time scales of
[0.6667, 1.3333, 2.6667, 5.3333, 10.6667, 21.3333, 42.6667, 85.3333, 170.6667] seconds, respectively),
from all subjects (i.e. s = 1, . . . , 24). Consequently, the analysis provides five indexes, which vary
with respect to the time scales and subjects, and for each time series: EEG–PSD from all channels,
and HRV-derived measures. To measure the linear and nonlinear coupling between the brain and
heart MF measures, the MIC implementation was used. This step is supposed to be applied in a
multi-subject experimental condition, thus allowing the multiscale MF measures contributed by
different subjects to concatenate (figure 3); this operation increases the statistical robustness of the
MIC [48].

The steps outlined above result in a collection of MIC values that build a topographical
distribution of MIC estimations across the scalp. At this stage, the variability across EEG bands,
different HRV measures and MF quantities are maintained. All the topographical distributions,
for all combinations of features and for both CPT and resting state, are reported in the electronic
supplementary material.

The functional relationship between brain and heart MF dynamics was estimated by applying
the MIC at a group level. Thus, the functional BHI was quantified as MICph(xMF, yMF), where the
superscript ph represents the experimental phase (i.e. rest or CPT), MF represents the MF feature
being analysed (i.e. one of C1, C2, LQ1, LQ2 or LQ3), and the vectors xMF and yMF represent the
collection of MF estimates derived at all nine time scales for each subject. More specifically, xMF
represents the array of estimates associated with a feature from the ANS side (e.g. C1(μRR)) and
yMF denotes an array of MF estimates associated with a feature from the CNS dynamic at a specific
frequency band and from an EEG channel (e.g. C1(PSDα,Fp2 ), where Fp2 represents the channel). In
other words, the two vectors used to derive the MIC (xMF and yMF) consist of the collection of the
same MF estimates extracted from a given heart- and brain-derived feature for all time scales and
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Figure 3. Schematic of the proposed signal processing framework. (Online version in colour.)

topographic distribution of
MIC value for each

combination

statistical comparison
between experimental

phases of the topographic
distributions through

Wilcoxon test

as a result there is p-value
associated at each triplet 

(MF feature, PP feature, EEG
band)

Figure 4. Schematic of a statistical comparison in the proposed processing pipeline. (Online version in colour.)

subjects. For example, the coupling extracted with MICCPT
C1 (μRR, θF8) refers to the dependencies

between the first-order MF cumulant C1 calculated for μRR (for all time scales and subjects) and
the θ -PSD of channel F8 (for all time scales and subjects) during the CPT.

Finally, statistically significant differences between the topographic distributions of MIC
values (across the 90 EEG channels) extracted for the two experimental conditions (i.e. rest or
CPT) were investigated using Wilcoxon non-parametric tests for paired samples (a schematic of
the implemented statistics is provided in figure 4) for each MF feature separately and for each
combination of EEG frequency band and PP-derived feature. The use of non-parametric tests is
justified by the non-Gaussian sample distribution as the MIC can take positive values in the [0, 1]
range only [48].

To summarize, considering the CNS, we used 90 EEG channels and five estimated PSD time
series, while for the ANS, we derived the time course of the 12 PP features listed in table 2.
For each of the 90 EEG channels, five EEG frequency bands, 12 PP-derived vectors and five
MF features, a value of MIC was extracted between a pair of vectors, each containing 216
elements. These elements corresponded to the number of subjects (i.e. 24) times the number of
time scales employed (i.e. nine). Statistical comparisons were performed between the two 90-
elements vectors (i.e. the number of EEG channels) extracted during the CPT elicitation and rest
states, respectively. Thus, a different p-value was acquired for each combination (triplet) of MF
measure, EEG band and HRV feature (figure 4).

To account for multiple comparisons, we corrected the significance threshold according to
the Bonferroni rule: we considered a total of 60 comparisons (five EEG bands × 12 PP features),
which yielded α= α1/60 = 0.00083 (α being the significance threshold, with α1 = 0.05 chosen as
the initial value).

(f) Experimental set-up
High-density 128-channel EEG and single-lead ECG were collected from 30 healthy subjects
(26.7 yr on average, gender balanced) at a sampling rate of 500 Hz. Signal acquisition was
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Figure 5. Exemplary HRV (top panel) and EEG (central panel) series from one representative subject. The bottom panel shows
the first 6 s of the CPT. The EEG series was recorded from channel 33 over the left-central lobe. (Online version in colour.)

Table 2. List of features extracted from the inhomogeneous point-process model of heartbeat dynamics. BS, bispectrum.

feature explanation

nonlinear HH two-dimensional integral from BS estimation in bands (HF, HF)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

dynamics LH two-dimensional integral from BS estimation in bands (LF, HF)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

LL two-dimensional integral from BS estimation in bands (LF, LF)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Lyap largest Lyapunov exponent
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

pSamEn continuous estimation of sample entropy
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

linear powLF PSD extracted in the LF band [0.04 − 0.15) Hz
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

dynamics powHF PSD extracted in the HF band [0.15.0.4) Hz
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

LF/HF ratio between power in the LF and HF band
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

μRR first-order moment of the estimated continuous R-R series
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

σ 2
RR second-order moment of the estimated continuous R-R series

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

μHR first-order moment of the estimated continuous HR series
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

σ 2
HR second-order moment of the estimated continuous HR series

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

performed using a Geodesic NA300 EEG System (Electrical Geodesics Inc.). All participants
volunteered to take part in the study and provided their informed consent. They asserted to be
healthy and right-handed.

The experimental protocol consisted of an initial rest phase lasting 3 min and a CPT phase,
in which subjects were instructed to submerge their left hand in iced water. Participants were
requested to keep their hand submerged for up to 3 min but were free to stop the session if they
experienced undue discomfort. A time threshold of 3 min was chosen in accordance with the
literature on pain arousal in response to temperature stress [32]. Figure 5 shows exemplary EEG
and HRV series gathered from one representative subject.

The local ethics committee, Area Vasta Nord-Ovest Toscana, approved all experimental
procedures. Recordings from six participants were discarded either because of an early
withdrawal from the CPT session, or because of significant movement-related artefacts. For
further information, refer to [12].

3. Experimental results
The results are represented in figure 6, in which each subfigure refers to a single MF feature (i.e.
C1, C2, LQ1, LQ2 and LQ3). The external circle was divided into 12 sections, one for each PP
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feature; the upper semi-plan contains features associated with nonlinear dynamics (i.e. LL, LH,
HH, Lyap, pSamEn), and the lower semi-plan contains features associated with linear dynamics
(i.e. powLF, powHF, LF/HF, μRR, σ 2

RR,μHR and σ 2
HR). The five EEG frequency ranges (i.e. δ, θ ,α,β

and γ ) are represented by different colours. In specific sections, a coloured segment linking the
centre of a subfigure to the circumference indicates that the topographic distribution across the
scalp corresponding to an MIC calculated for that specific MF feature (identified by the subfigure),
PP-feature (identified by the section in the circle) and EEG band (identified by the colour)
combination revealed statistically significant differences (i.e. corrected p-value< 0.05) between
the two experimental conditions.

The two upper panels in figure 6 show the results of the statistical comparison between
the topographic distributions of the first- and second-order cumulants calculated over the MF
spectrum. Many EEG band and PP feature combinations are significant, meaning that the
functional relationship between brain and heart dynamics changes from the resting to the CPT
phase from the MF perspective. The HRV–PSD quantities extracted in the LF and HF bands
seem to be the most significant indices involving the first cumulant C1 (top-left panel); this
is particularly evident from the power in the LF band. Both the C1 and C2 panels appear to
display considerably closer connections with their corresponding lower semi-plan (referring to
linear HRV-feature dynamics) compared to the upper semi-plan. Therefore, we can argue that
the functional brain–heart coupling in the MF domain is driven mainly by the MF properties of
instantaneous heartbeat estimates of linear dynamics.

The C2 panel in figure 6 (top-right) shows more significant connections than C1. In particular,
almost all the HRV measures are coupled with the EEG γ band, followed by the α range, which
shows significance when coupled with high-frequency estimations from the bispectrum of the
HRV. Additionally, important connections are observed with the γ and β bands, and the EEG
δ band, which exhibits significant couplings, particularly for the HRV features related to linear
dynamics. By contrast, the θ band of the EEG is least represented.

Inspection of the LQ1 index, which takes into account the general non-Gaussianity of a time
series, highlights many significant combinations and is represented in the central-left corner
of figure 6. All the EEG bands seem to be involved, with few heartbeat indexes conspicuous
owing to their insignificance (i.e. the LF/HF ratio and the variance of the HR). In this case, the
EEG frequency range exhibiting the greatest coupling to HRV features is the β band, thereby
confirming the presence of important couplings at these brain activity frequencies. The EEG θ

band shows slight significance when coupled with features extracted from the bispectrum and the
Lyapunov exponent; however, it is not coupled with most of the features extracted from the linear
dynamics domain. It should be noted that the coupling of the Lyapunov exponent time series of
the HRV is significantly different between the CPT and resting states at lower EEG frequencies,
up to the α band, and this coupling is not effective when coupled with higher frequency ranges.
The bispectral coefficients (i.e. HH, LH and particularly LL) that provide significant comparisons
with both LQ1 and LQ2 (both central panels) are especially important. The LQ2 index considers
the symmetry of the non-Gaussian distribution of the MF spectrum and is evidently different in its
topographic distribution between the two experimental conditions, particularly for the HRV PSD
in the LF band, and the bispectral quantities coupled with many EEG bands. The θ frequency
range of the brain activity is less involved in this analysis. The third non-Gaussian index LQ3,
represented in the bottom-left panel, shows significant couplings, albeit fewer than the previous
two.

The aforementioned results are also shown in figure 7, in which significant brain–heart MF
connections are categorized according to EEG bands, while the different colours characterizing
the linking segments represent the MF features. This figure shows that oscillations in the γ band
(bottom-left panel) are connected most densely, including different MF and PP features (apart
from σ 2

HR), with 30 significant couplings identified. Conversely, the θ band shows the lowest
number of significant couplings (21), whereas δ, α and β bands all show similar connection
densities (25, 23 and 23 significant couplings, respectively).
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Figure 6. Schematic of statistically significant differences between the experimental conditions regarding the topographic
distribution of MIC values. Each subfigure represents a single MF feature, whereas different colours refer to different EEG bands.
(Online version in colour.)

4. Discussion and conclusion
Aiming at investigating if Brain–Heart Interplay (BHI) extends onto the multifractal (MF) domain,
we devised a novel signal processing framework to perform a quantitative functional analysis
of BHI in the MF domain using a non-Gaussian expansion. Functional coupling is estimated
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Figure 7. Schematic of statistically significant differences between the experimental conditions over the topographic
distributions ofMIC values. Each subfigure represents a single EEG band,with different colours referring to differentMF features.
(Online version in colour.)

between MF features from brain and heartbeat dynamics using MIC, with MF spectra estimated
using the wavelet p-leaders MF formalism. The proposed methodology was evaluated and tested
for experimental EEG and HRV series gathered from 24 healthy subjects at a resting state and
during a CPT.
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The proposed processing pipeline leverages previous findings on brain and heartbeat
dynamics coupling estimated using an MIC [7] and the intrinsic MF nature of heartbeat and
EEG dynamics [15,21], demonstrating non-Gaussian and nonlinear behaviour [27,28]. It was also
suggested that a complete MF analysis of heartbeat dynamics should incorporate inhomogeneous
point-process models [27,38].

The results show that synchronized changes in brain and heartbeat dynamics occur in the
MF domain for the CPT phase, demonstrating that changes in the functional BHI within the MF
domain occur in response to certain sympathovagal changes. This is particularly evident for the
second-order MF cumulant C2, and for the first two indices of the non-Gaussian expansion (i.e.
LQ1 and LQ2), suggesting that major differences are associated with the nonlinear dynamics
features of HRV and EEG parameter dynamics. This hypothesis is further supported by the
fact that the first-order MF cumulant (C1), which stems from linear behaviour in the time
domain, detected few significant BHI differences associated with HRV linear dynamics frequency
quantifiers. Of note, first and third non-Gaussian MF indexes (i.e. LQ1 and LQ3) show differences
in the RR- and HR-variance. This might be due to the nonlinear relation between RR and HR,
whose effects on HRV power and variance have been previously characterized [49,50]. More
specifically, LQ1 is associated with the quantification of general departure from Gaussianity and
LQ2 is associated with the asymmetry of the distribution. As a consequence, we suggest that the
non-Gaussian features of EEG- and HRV-derived series should be considered when investigating
BHI dynamics.

In previous studies, we proved that a strong sympathovagal elicitation as the CPT generally
leads to less pronounced MF behaviour separately in the EEG and HRV time series [27,28], as
well as in the linear interplay between the two electrophysiological series, particularly in the
heart-to-brain direction and the HRV-LF and EEG-γ frequency bands [12].

Here, more pronounced differences between the two experimental conditions are evident
at higher EEG bands, particularly the γ range, and, for the cardiovascular system, the HRV-
LF band and bispectral features. The results presented here confirm the complexity of the BHI
phenomenon and, speculatively, we suggest that this arises from multiple responses associated
with timing, scalp regions and directionality, which underlies bodily reactions to the allostatic
state in order to re-establish homeostasis.

It should be noted that the proposed framework contains few limitations. First, the use of MIC
does not allow the directionality of the functional brain–heart coupling to be assessed; the MIC,
in fact, does not allow for such a causal inference, although it assesses statistical independence
and quantifies linear and nonlinear couplings between the system outputs. Second, the statistical
power of the comparison between experimental sessions is dependent on the number of EEG
sensors, thus limiting the investigation of specific brain areas associated with cardiac interplay.

To the best of our knowledge, this study is the first to extend the quantitative assessment of
functional BHI to the MF domain.

We conclude that the co-occurrence of MF behaviours between brain and heartbeat dynamics
does exist, namely the functional BHI in the MF domain through cumulants and non-Gaussian
expansions, and that they vary following sympathovagal changes induced by peripheral stress,
such as that experienced during a CPT.

Future research efforts will be directed towards the application of the proposed framework
to experimental datasets gathered both from healthy subjects and patients with brain and/or
cardiovascular disorders. Consequently, we should be able to extract further valuable insights
into the influences of different sympathovagal changes as well as cognitive/affective elicitation.
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