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Abstract— Functional Magnetic Resonance Imaging (fMRI)
serves as a unique non-invasive tool for investigating brain func-
tion by analyzing blood oxygenation level-dependent (BOLD)
series. These signals result from the complex interplay be-
tween deterministic and stochastic components underpinning
biological brain activity. In this context, the quantification
of the stochastic component, here defined as brain noise, is
challenging without making assumptions on the deterministic
dynamics. Leveraging on Approximate Entropy, in this study
we present a methodological framework aimed to estimate
intrinsic stochastic brain dynamics through fMRI data analysis
without making assumption on the deterministic model. We
estimated brain noise from fMRI series of 200 participants from
the publicly available Cam-CAN dataset, aiming to quantify
the amount of stochastic dynamics in different brain regions.
Moreover, we hypothesize that a functional relationship exists
between intrinsic brain noise and subject’s age. Results indicate
that a significant part - approximately 18% to 60% - of the
fMRI signal power can be attributed to the intrinsic stochastic
dynamics within the brain, and a linear augmentation is
reported in association with the maturation process. These find-
ings underscore the physiological importance of characterizing
neural noise and its unique distributions across various brain
regions.

I. INTRODUCTION

Blood oxygenation level-dependent (BOLD) signals de-
tected through functional magnetic resonance imaging
(fMRI) is a powerful tool for capturing functional brain
activity. However, these signals are susceptible to contam-
ination from diverse noise sources, broadly categorized as
measurement noise and intrinsic brain noise [1], [2]. Mea-
surement noise, also referred to as additive or output noise,
primarily arises from factors related to the scanner (e.g.,
thermal noise, magnetic field instability, coil imperfections)
[1], or to physiological processes (e.g., subject movement,
cardiac and respiratory cycles) [2].

Intrinsic stochastic components in brain dynamics stem
from neuronal interactions and the inherent variability and
randomness of neuronal activity [3], [4]. Recent studies
have emphasized the crucial role of stochastic neural net-
work states [5], emphasizing the necessity for theoretical
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frameworks and experimental paradigms aimed to under-
stand noise dynamics at the brain network level. Stochastic
changes in synaptic activities are thought to improve neural
network performance, potentially contributing to learning [6].
Furthermore, the stochastic nature of information transfer
at chemical synapses, where vesicles fuse with the plasma
membrane and release neurotransmitter, plays a vital role in
regulating signal propagation within neuronal networks [7].
Finally, stochastic resonance has been observed to enhance
processing in both experimental and theoretical models of
neural systems [8].

Inherent brain noise is dynamical, influencing brain ac-
tivity over time. Generally, it can be expressed as y, =
T(Yn—1,Yn-2,---,Y0) + €, where y, represents the fMRI
signal at time #,, and {g,}, denotes intrinsic brain noise.
Characterizing {¢&,}, is essential for ensuring the reliability
and validity of fMRI-based inferences regarding brain func-
tion [9]. However, recognizing a component as deterministic
or stochastic relies on the understanding of the underlying
physiology and biophysics. Notably, components initially
categorized as noise later gained significance as signals of
interest [2]. Reasonably, this is due to the estimation of
dynamical brain noise {&,}, being contingent on the precise
definition of the deterministic component 7.

Recent studies have investigated brain activity stochastic
component through waveform regularity [10]. However, it is
crucial to note that such approach assumes brain dynamics
to be entirely random, disregarding the potential presence
of complex and chaotic deterministic components in brain
functioning. In the last few years, attempts have been made
trying to estimate stochastic components of dynamic series,
particularly regarding physiological signals [11], but these
were not applied on fMRI series yet.

In this study, for the first time we try to quantify the
intrinsic stochastic component in brain dynamics recorded
through fMRI series without making assumptions on the
deterministic part, thus making our approach suitable for any
continuous and differentiable function associated with fMRI
signals. The study hypothesis is that the presented estimation
of fMRI-based brain noise is not a measurement noise,
but a measure of physiological noise that change according
to brain regions or physiological conditions (e.g., aging).
To test the proposed approach, we employ the publicly-
available Cambridge centre for ageing and neuroscience
(Cam-CAN) dataset [12], gathered from a cohort of over
healthy individuals aged from 18 to 87 years.

The functional and structural evolution of the brain in
healthy aging is a topic that is attracting progressively in-



creasing attention [13]-[15]. Specifically, diminished BOLD
activation has been reported among older adults in the
prefrontal cortex and hippocampus in cognitive tasks [16],
[17], as well as in fronto-parietal regions in resting state [18],
and further cerebrovascular changes have been detected as-
sociated with age [19]-[21]. This paper presents preliminary
results on age-dependent spatial patterns of brain noise in
fMRI series. Further findings are detailed in [22].

II. DATA AND METHODS
A. Cam-CAN data set description

The Cam-CAN dataset comprises fMRI series gathered
from a large population of healthy subjects, with ages span-
ning from 18 to 87, recorded during different experimental
conditions. In this study, we considered data from 200
subjects, randomly chosen among the entire cohort, and we
limited the analysis to the resting state (with a repetition time,
TR, of 1970ms) for 8min and 40s. The fMRI data underwent
standard preprocessing, and the obtained brain volume was
partitioned into 116 regions of interest (ROI) based on the
automated anatomical labeling (AAL) atlas [23]. Additional
details regarding data collection and preprocessing can be
found in [12].

B. Brain Intrinsic Noise and Numerical Estimation

Consider the signal observed in a brain ROI as a mea-
surable outcome generated by an unknown, discrete met-
ric dynamical system denoted as (Y,u,7). In this model,
Y represents a compact subset of R, while 7 denotes a
differentiable mapping function with a bounded derivative,
preserving the probability measure p. Conceptually, the
collected signal is produced by a deterministic, unknown,
and smooth function or map whose values are confined to
a limited interval of real numbers. In this context, we posit
that a noise-free fMRI series from a ROI can be formulated
as wy, = T(Wp—1,Wn_2,...,wp), where w; belongs to Y for
all positive integers i.

We define the intrinsic brain noise as the dynamical
noise, or rather a sequence of independent and identically
distributed random variables {¢g,},, where the samples &,
interact with the brain dynamics according to equation

Yn =T (Yn-1,--:Y0) + & (D

Under the hypothesis that any fMRI recording is driven by
the effects of dynamical or brain noise, we can estimate the
power of such distortion. The approach we follow is fully
described in [24]. Here we recall the main features: first
that the method does not require any knowledge about the
analytic dynamics described by the map T in presence of
the dynamical noise; and second that it exploits the geomet-
ric behavior of the approximate entropy (ApEn) quantifier
[25], which diverges under noisy perturbations if one of its
parameter is small enough. Consequently, assuming that a
perturbed series of the form z(o) = (20, T (z0) + €1, T (T (z0) +
€)+&,...) is corrupted by the dynamical noise €, having
a Gaussian distribution .4(0,0), then the proposed algo-
rithm finds the dynamical noise standard deviation ¢ by

searching for the radius r where the curves ApEn(z(c),m,r)
and —log[r/(o+/)] approximately converge, leading to the
following quantification

log(o) ~ ApEn(z(0),m,r) +log(r//7) (2)

for any embedding dimension m when r < o. In this
work we apply the estimation procedure for embedding
dimension m = 2 and for the tolerance resolution Ar =
0.001 x {time series range}. An interested reader can find a
comprehensive description of the methodology, its derivation
and mathematical foundation in [11], [24].

C. Statistical analysis

After quantifying the intrinsic brain noise for each fMRI
series, thus meaning for each subject and each brain volume
ROI, a basic functional relation between the brain noise and
the subject age has been quantified using the nonparamet-
ric Spearman correlation coefficient. To statistically assess
significance of the correlation coefficients the associated p-
values were calculated through large sample approximation,
due to the large sample size. The significance threshold was
fixed at 0.05, and p-value correction for multiple compar-
isons was accounted for using the Bonferroni correction, thus
meaning that the corrected significance threshold was fixed
at 0.05/116 =4.31 % 10~* (where 116 is the number of ROI).

To qualitatively compare the difference between the ex-
perimental results in terms of estimated brain noise obtained
through the presented method, and a basic statistical estima-
tor of variability, we performed the same analysis using the
standard deviation of each ROI fMRI series and calculating
its correlation to subjects’ ages, again through Spearman’s
coefficient.

III. RESULTS

Experimental results are graphically represented in terms
of topographical distribution of Spearman correlation coeffi-
cients across brain ROIs in Fig. 1, where the figure portrays
external ROIs for graphical reasons, thus excluding more
subcortical regions such as limbic system, cerebellum, and
vermis. In detail, the figure shows the right hemisphere in the
first row (the left hemisphere is in the second row), for both
the lateral (left column) and medial (right column) views.
Graphical representations of brain volume and ROIs were
visualized using R-Studio! software and the ggseg? package.

In Fig. 1, red areas represent significant positive cor-
relation, white areas stand for not significant correlations,
whereas blue represent significant negative correlation. It is
reminded that significance threshold is set at oo =0.05/116 =
4.31%107*. A darker color is used for higher Spearman
coefficient in terms of absolute value.

It is possible to notice that most of the brain ROIs have
a significant correlation coefficient (53 out of 116), which
appears stronger on lateral view of the left hemisphere,
reaching a maximum value of ~ 0.38 in a central ROI and

! Ihttps://posit.co/download/rstudio-desktop/
Zhttps://github.com/ggseg



Fig. 1: Regions of interest (ROIs) in the brain exhibit
notable correlations between functional brain noise and
age. These images showcase significant Spearman correla-
tion coefficients reflecting the relationship between noise
and aging. Darker red areas represent more robust positive
correlation, white areas stand for not significant correlations,
whereas blue represent significant negative correlation. The
first row is the right hemisphere, the second row represents
the left hemisphere, whereas left column is the lateral view
and the right column represents the medial view.

a temporal ROI. More specifically, a higher correlation (p
in (0.35,0.38)) was found in the ROIs #57, #29 and #50
(Postcentral Gyrus L, Insula L, and the Superior Occipital
Gyrus R, respectively).

Figure 2 depicts the overall trends between estimated brain
noise and age across all significant ROIs. Please note that
the estimated intrinsic brain noise is represented as the ratio
between noise and signal power, to quantitatively appreciate
how the intrinsic noise can substantially contribute to the
overall signal power. Violin boxplots in figure 2 depict such
noise-to-signal ratio across all significant brain ROIs in 7
different age groups spanning the entire age range (i.e., 18
to 87 years). The age groups are categorized as follows:
<30, 30-40, 40-50, 50-60, 60-70, 70-80, and >80. Each
black dot denotes an individual subject noise estimation. A
noticeable positive trend is evident in median noise levels
with increasing age, indicated by a Spearman coefficient
p =0.9643 (p-value= 0.0028), here highlighted by the thick
blue line. A qualitative comparison has been performed by
analyzing fMRI signal standard deviation throughout age
groups. Results are illustrated in Figure 3, where topograph-
ical and colorful notation are the same as used in figure
1. When the Spearman correlation coefficient was calculated
between fMRI signal standard deviation and subject age, only
9 ROIs showed significant correlations with no accordance in
sign (i.e., 5 ROIs had positive correlation coefficients, and the
remaining 4 were anticorrelated with age). Also the absolute
values of the significant coefficients were largely lower than
those reported in figure 1.

IV. DISCUSSION

In this study, we employed a novel mathematical frame-
work to estimate intrinsic brain noise by considering it
as the stochastic component of an unknown dynamical

% Noise to Signal Ratio

<30 3040 40-50 50-60 60-70 70-80 >80

Age Groups

Fig. 2: Variation in fMRI Noise associated with age. Violin
boxplots depict the noise-to-signal ratio, calculated as the
variance of encountered noise divided by the power of the
signal, across all significant brain ROIs in 7 different age
groups spanning the entire age range (i.e., 18 to 87 years).
Individual subject noise estimations are denoted by black
crosses. The thick blue line represents the least-square linear
regression of group-wise median noise levels.

system that encapsulates functional brain activity gathered
as fMRI BOLD series. We also considered the differences
between measurement noise and intrinsic brain noise within
the observed dynamics. Indeed, measurement noise emerges
from external sources during the data acquisition process
with respect to the actual brain functioning, such as sensor
fluctuations, environmental interference, background noise,
or subjects movements. This type of noise may significantly
affect the recorded signal, often concealing the genuine
underlying biological phenomena. Conversely, intrinsic brain
noise, or dynamical noise, is an intrinsic characteristic of
biological systems, arising from the stochastic nature of
various brain processes like gene expression, cellular activity,
or neural fluctuations. The quantification of this dynamical
noise poses a challenge, as it relies on the specific modeling
attributed to deterministic brain activity.

To address the challenge of quantifying intrinsic brain
noise, we introduced an estimation framework without mak-
ing assumption on the dynamical feature of the deterministic
component of the overall underlying brain activity. Our
method leverages the nonlinear quantifier (ApEn) [25] and
explores its differential behavior in noisy series when the
quantifier is considered as a function of one of its param-
eters [11], [24]. Note that our proposed noise estimation
framework can be applied to any time series, making it
potentially valuable in fields beyond computational phys-
iology and neuroscience. Here, we investigated stochastic
brain components across different stages of brain maturation.
Assuming that measurement noise is uncorrelated with aging
due to its distribution across data acquisition from various
subjects and MRI machines, we uncovered a modulation
of intrinsic brain noise with age progression in healthy
individuals. Our findings, based on 200 subjects from the
Cam-CAN dataset, underscore the distinct distribution of
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Fig. 3: Regions of interest (ROIs) in the brain do
not exhibit notable correlations between signal stan-
dard deviation and age. These images showcase significant
Spearman correlation coefficients reflecting the relationship
between signals standard deviation and aging. Darker red
areas represent more robust positive correlation, white areas
stand for not significant correlations, whereas blue represent
significant negative correlation. The first row is the right
hemisphere, the second row represents the left hemisphere,
whereas left column is the lateral view and the right column
represents the medial view.

stochastic brain activity components during the resting state,
as well as their modulation during maturation.

Specifically, all the trends demonstrate a statistically sig-
nificant increase along with aging across various brain re-
gions, particularly in regions such as the precentral and
frontal areas, Rolandic Operculum, medial Cingulum, occip-
ital areas, and others. In addition, our examination indicates
that in cases where the variability of the fMRI series shows
partial or no distinct patterns with aging [26], our approach
unveils that the intrinsic stochastic component predominantly
influences the variability series of elderly subjects. Simul-
taneously, this noise has minimal impact on the overall
dynamics of the young cohort.

The presence of noise can differentially influence
biomarker definition and estimation across distinct brain
regions, potentially resulting in inaccuracies in pinpointing
and characterizing reliable indicators for specific conditions.
Consequently, these inaccuracies may give rise to misin-
terpretations and incorrect clinical decisions, particularly
when comparing biomarker levels among different brain
areas. Therefore, precise estimation of biological noise is
crucial for evaluating psychological function and associ-
ated pathophysiology. Limitations of this study concern the
reduced number of subjects and the choice of only one
dataset. Further developments will be devoted to extending
the noise analysis to a larger cohort from different datasets
and for different pathophysiological conditions, investigating
physiological correlates of intrinsic brain noise.
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