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Abstract— The cardiovascular system can be analyzed using
spectral, nonlinear, and complexity metrics. Nevertheless, dy-
namical noise may significantly impact these quantifiers. To our
knowledge, there has been no attempt to quantify the intrinsic
cardiovascular system noise driving heartbeat dynamics. To this
end, this study presents a novel, model-free framework to define
and quantify physiological noise using nonlinear Approximate
Entropy profile. The framework was tested using analytical
noisy series and then applied to real Heart Rate Variability
(HRV) series gathered from a publicly-available dataset of
recordings from 19 young and 19 elderly subjects watching
the movie “Fantasia”. Results suggest that physiological noise
may account for over 15% of cardiovascular dynamics and
is influenced by aging, with decreased cardiac noise in the
elderly compared to the young subjects. Our findings indicate
that physiological noise is a crucial factor in characterizing
cardiovascular dynamics, and current spectral, nonlinear, and
complexity assessments should take into account underlying
dynamical noise estimates.

I. INTRODUCTION

The analysis of Heart Rate Variability (HRV) series pro-
vides valuable information on the autonomic regulation of
cardiovascular dynamics and has been used to study various
pathological states, including mood disorders, cardiovas-
cular diseases, and aging [1]–[5]. Accordingly, nonlinear
and complexity measures, such as the Lyapunov exponent
[6], embedding dimensions [7], and entropies [3], [8], are
increasingly popular for HRV analysis [3].

Despite the ability of nonlinear and complexity analyses to
differentiate these pathological and physiological conditions,
their application in clinical settings is limited by the ab-
sence of clear physiological correlates and specificity issues
[9], [10]. HRV series represent the time intervals between
consecutive heartbeats, as indicated by the R peaks in the
electrocardiogram (ECG), and are thought to be the output
of a nonlinear system showing complex dynamics, being
influenced by intrinsic dynamical noise [1], [2], [11]. Such
intrinsic physiological noise may be due to the interaction
between the autonomic nervous system sub-components,
alongside with other physiological systems (e.g., respiration,
central nervous system) [12], [13], and may significantly
alter complexity estimates and related pathophysiological
interpretations [14], [15]. While the role of physiological
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noise in biological processes has been acknowledged [16],
[17], to the best of our knowledge, it has not been formally
defined nor has cardiovascular noise been calculated in HRV
series.

In this study, we aim to formally define in a closed
form and estimate physiological noise in the cardiovascular
system through HRV series analysis. Assuming HRV series
result from a dynamical combination of deterministic and
stochastic components, we model physiological noise as
independent and identically (IID) distributed random vari-
ables with a Gaussian distribution N (0,σ2) and estimate
the standard deviation σ by exploiting the approximate
entropy (ApEn) [18] profile. Our model-free method for
dynamical noise estimation was chosen over well-known
model-based techniques, such as the Kalman filter or au-
toregressive models, as it does not make any assumptions
about the underlying (deterministic) system dynamics [19].
We first demonstrate the accuracy and robustness of the
proposed noise estimation method on synthetic time series
with varying levels of dynamical noise, simulating the effects
of physiological noise. We then estimate physiological noise
in HRV series obtained from young and elderly subjects.

II. MATERIALS AND METHODS

A. Physiological Noise Definition and Physiological Noise
Estimation Procedure

Let us represent the cardiovascular system as a discrete
metrical dynamical system (X ,µ,T ), which is defined by
any piecewise differentiable map function T with bounded
derivative on a compact set X ⊂ R and preserving the
probability measure µ . A generic noise-free orbit of such a
dynamical system is of the form wn = T (wn−1,wn−2, ...,w0),
with wi ∈ X , for all positive integers i.

We define the physiological noise as the dynamical noise
constituted by a sequence of IID Gaussian random variables
{εn}n following the distribution N (0,σ2), and whose sam-
ples modify physiological dynamics at each step according
to the following equation:

xn = T (xn−1,xn−2, ...,x0)+ εn, (1)

with xi ∈X for all positive integers i, and {xn(σ)}N
n=1 a noisy

physiological time series comprising N samples (next, a HRV
series).

According to the embedding theorem [20], the recon-
structed m-dimensional state space Mx of X is as follows:

Mx( j) = {x( j),x( j+ τ), ...,x( j+(m−1)τ)} (2)



where j ∈ 1,2, ...,N is a time index, m is the embedding
dimension, and τ is the delay-time for the state-space recon-
struction, and N +(m−1)τ is time series cardinality.

In accordance with the theory fully reported in [19], we
here derive the standard deviation σ of the physiological
noise in a closed form as follows:

log(σ)≈ ApEn(X ,m,r)+ log(r
√

π)

A formal definition of the well-known ApEn [18] is
reported in the Appendix I below. Assuming that a physi-
ological time series {xn(σ)}N

n=1 under investigation satisfies
Equation 1, meaning it is the output of an unknown discrete
metric dynamical system contaminated by dynamical noise,
the standard deviation of the physiological noise (σ ) can be
estimated through the following steps:

- A fixed embedding dimension m is chosen;
- The map r → ApEn({xn(σ)}N

n=1,m,r) is computed as
a function of the tolerance parameter r, which varies
from 0 to the amplitude of series X with a step ∆r of
arbitrary size;

- A rough estimate of σ is obtained by identifying r̄,
the value that minimizes the discrete derivative of r →
ApEn({xn(σ)}N

n=1,m,r)+ logr;
- Within the interval I(r̄) = [rmax, r̄], where rmax is the

tolerance value at which r → ApEn({xn(σ)}N
n=1,m,r)

reaches its maximum, the best fit σ̄ for the function σ →
ApEn({xn(σ)}N

n=1,m,r)+ log [r/(σ
√

π)] is determined.
In this paper, all noise estimates are performed with a

resolution step of ∆r = {series amplitude}/1000.

B. Synthetic Data

The proposed estimation method is here evaluated using
analytical series generated from the Logistic map, defined as

fλ : [0,1]→ [0,1], fλ (x) = λx(1− x)

where λ is a real-valued parameter in the interval [0,4]
and set to 3.5 in periodic regime. To simulate the effect
of noise, 100 perturbed series with various standard devi-
ation percentages (2%,5%,10%,15%,20%) relative to the
amplitude of the noise-free series (N = 5000 samples) were
generated. The noise-free series were created using a random
initial condition x0 ∈ [0,1]. A white Gaussian process series
(5000 samples) was then added to the noise-free series
with the standard deviation as the specified percentage of
the amplitude. The perturbed series were constructed by
adding a sample of the noise realization at each step of the
Logistic map, taking into account the dynamical noise law
and applying reduction modulo 1 at each step to ensure that
the points of the map lie in the interval [0,1]. This process
is referred to as the “bounce” effect.

C. Experimental Setup and Data Preprocessing

This study was approved by the committee of bioethics of
the University of Pisa with review n. 19/2021. A total of 38
ECG signals were obtained from two groups of healthy sub-
jects: 20 young adults aged 21 to 34 years old and 20 elderly

adults aged 68 to 85 years old. The ECG signals were col-
lected from the publicly available Fantasia database [21] and
are accessible at https://physionet.org/content/fantasia/1.0.0/.
The two groups contained equal numbers of males and
females. The continuous ECG signals were recorded at a
frequency of 250Hz during 120 minutes of rest, with subjects
required to remain awake by watching the movie Fantasia
(Disney, 1940) [21]. The HRV series were derived from the
ECG signals using the Pan-Tompkins algorithm [22] and
were verified through visual inspection. The cardinality N
in HRV series of the young subjects varies from N=5358 to
N=9053 (median: N=7100), while that of the elderly cohort
ranges from N=6752 to N=8410 (median: N=6752).

D. Statistical Analysis

The comparison of standard deviation noise estimates
between the 5 different levels of noise (2%, 5%, 10%,
15%, 20%) in the synthetic series was conducted using a
non-parametric Kruskal-Wallis test. The null hypothesis was
equal median among populations, with a significance level of
α = 0.01. Additionally, multiple pairwise comparisons were
performed using Mann-Whitney tests for unpaired samples,
with a significance level of α1 = α/10 = 0.001.

For the artifact-free HRV series in the dataset “Fantasia”,
non-parametric Mann-Whitney tests for unpaired samples
were used to compare the standard deviation noise estimates
between the elderly and young groups. The null hypoth-
esis was equal median between the two populations. The
statistical comparison was performed for both embedding
dimensions m = 2 and m = 3, with a significance level of
α = 0.01.

III. EXPERIMENTAL RESULTS

The results of the noise estimation method applied to the
analytical logistic series benchmark are displayed in Fig. 1 in
the form of boxplot statistics. The noise standard deviation
was estimated for an embedding dimension of m = 2. The
estimated values of the dynamical noise are shown with
respect to the actual, superimposed noise for each of the
5 groups with different levels of standard deviation.

A visual examination of the results suggests that the
algorithm accurately detects and estimates the different levels
of superimposed dynamical noise across all realizations, as
indicated by the small dispersion around the median values.
It is noted that as the level of superimposed noise decreases,
the estimated noise values are more consistently concentrated
around the actual value. Although noisier series exhibit a
slight increase in dispersion, it is possible that this is due
to the similarity of the corrupted dynamics with a pure
stochastic process. However, this increase in dispersion does
not significantly affect the accuracy of the noise estimation,
as evidenced by the p-values obtained from the Kruskal-
Wallis and multiple pairwise Mann-Whitney tests for un-
paired groups with a null hypothesis of equal median among
populations. These p-values were found to be less than 10−6.

The results of the noise estimation method on physiolog-
ical data are presented as boxplots in Fig. 2 for embedding



Fig. 1: Dynamical noise standard deviation estimation at
different levels for Logistic map, λ=3.5. Noise is estimated at
fixed embedding dimension (m = 2). Series length is of 5000
samples for 100 realizations. The percentages of imposed and
estimated noise correspond to the ratio between the noise
std value and the noise-free signal amplitude. P-values of
Kruskal-Wallis and multiple pairwise Mann-Whitney tests
for unpaired group with a null-hypothesis of equal median
among populations are lower than 10−6.

dimensions m = 2 and m = 3. The estimates of physiological
noise do not exhibit significant variations with respect to
the embedding dimension. A comparison of the absolute
noise standard deviation achieved with the proposed method
for the elderly and young groups is shown in the upper
boxes of the figure. In terms of median ± median absolute
deviation (MAD), the results indicate that young people have
significantly higher cardiac noise levels (0.0454±0.0188 for
m = 2 and 0.0453±0.0153 for m = 3) compared to elderly
subjects (0.0219± 0.0058 for m = 2 and 0.0208± 0.0054
for m = 3), with p < 0.01. This difference was expected as
elderly subjects tend to have a lower range in their HRV
series, leading to a reduced noise level.

When the absolute noise estimation is subject-wise stan-
dardized with respect to the HRV series amplitude (as if
all series have an amplitude equal to 1), the results show
that young people still have higher noise standard deviation
(10.45% ± 2% for m = 2 and 9.53% ± 1.6% for m = 3)
compared to elderly subjects (7.2% ± 2% for m = 2 and
7.15% ± 1.5% for m = 3), regardless of the embedding
dimension. Furthermore, noise levels in young groups exhibit
more variability, as evidenced by the larger dispersion around
the median value.

IV. DISCUSSION AND CONCLUSION

We provide a methodological framework to formally
define and estimate physiological noise in cardiovascular
systems. HRV series are assumed to be the outputs of an

unknown dynamical system that results from the interplay
between deterministic and stochastic components. While we
do not make any assumptions regarding the deterministic
cardiovascular dynamics, we assume that the stochastic
component - physiological noise - can be modeled as a
sequence of IID random variables following a Gaussian
distribution N (0,σ2). This modeling choice is justified by
the fact that physiological noise is expected to affect all the
frequencies of the HRV spectrum equally, rather than being
concentrated in a specific frequency band (as in the case of
colored noise). Consequently, the proposed dynamical noise
estimation algorithm is suitable for HRV series as it does
not require any specific assumptions about the underlying

Fig. 2: Noise estimation in cardiovascular variability series.
Boxplots statistics for the proposed physiological noise es-
timation in Elderly vs Young groups: absolute noise (top
figures) and standardized noise with respect to the amplitude
of the series (figures below). Estimates used embedding
dimension m = 2 and m = 3. Red segments stand for median
values, circles denote the single-subject estimate, crosses
the outlier value points, while “violin” plot denotes the
estimate’s density across central values. For both absolute
and standardized noise, young cohort subjects shows a higher
median value with respect to the elderly ones (p < 0.01 for
both embedding dimensions).



dynamics, which may be constituted by unknown nonlinear
functions showing complex dynamics [1]–[5], [11], [12].

Experimentally, we first demonstrate the effectiveness of
the method on analytical benchmarks, consisting of synthetic
series generated by the logistic map in periodic regime
and corrupted by various levels of dynamical noise. Indeed,
both logistic maps and HRV series are output of discrete-
time, nonlinear systems that generate time-series data. Our
numerical results confirmed the accuracy of the method in
distinguishing the different levels of noise.

We then apply the proposed noise estimation method to
38 HRV series from the publicly available Fantasia database,
including 19 series from young and 19 from elderly subjects
in a resting state. Previous studies have suggested that
complexity in heartbeat dynamics decreases with age [23],
[24], but these measures are biased by the assumption of a
noise-free cardiovascular system dynamics. Our numerical
analysis shows that aging is associated with lower noise
levels in autonomic control on heartbeat dynamics, as the
noise standard deviation decreases in the elderly group with
less inter-subject variability. This phenomenon suggests that
aging may regulate physiological noise rather than directly
modulating the underlying system dynamics. These results
are consistent with previous studies [25] where aging was
found to have no effect on complex cardiovascular dynamics.
Accordingly, we may hypothesize that the presence of physi-
ological noise, which was not taken into account in previous
complexity assessment, has strongly altered the results in the
literature regarding complex cardiovascular dynamics [1]–
[4], [14]. This study has some limitations, including the
small sample size and the need for further investigation with
larger cohorts and in different physiological and pathological
conditions. Moreover, the physiological mechanisms respon-
sible for the observed age-related changes in noise levels of
cardiovascular dynamics require further investigation. Note
that the proposed physiological noise estimation may be
applied to any time series generated by a complex dynamical
system, therefore it may be applied to calculate noise in
physiological systems other than the cardiovascular one, e.g.,
brain/cortical/neural noise.

V. APPENDIX I: APPROXIMATE ENTROPY (APEN)

The nonlinear quantifier Approximate Entropy (ApEn)
[18] is non-negative and quantifies the predictability of a time
series. Formally, given a series {yn}N

n=1 of N samples and a
positive integer m, the series is embedded in Rm forming
vectors Yi = (yi, . . . ,yi+m−1) with i = 1, . . . ,N −m+ 1. For
a distance d in Rm and for a positive value r, we define
Cm

i (r) = {number of j s.t. d(Yj,Yi) < r} and Φm(r) = (N −
m+1)−1

∑
N−m+1
i logCm

i (r), which yield the definition of the
ApEn:

ApEn({yn}N
n=1,m,r) = Φ

m(r)−Φ
m+1(r).

In this setting, the ApEn({yn}N
n=1,m,r) assesses the proxim-

ity of the embedded vectors {Yj}N−m+1
j=1 .

REFERENCES

[1] U. R. Acharya et al., “Heart rate variability: a review,” Medical and
Biological Engineering and Computing, vol. 44, no. 12, pp. 1031–
1051, 2006.

[2] R. Barbieri et al., Complexity and nonlinearity in cardiovascular
signals. Springer, 2017.

[3] R. Sassi et al., “Advances in heart rate variability signal analysis:
joint position statement by the e-cardiology esc working group and
the european heart rhythm association co-endorsed by the asia pacific
heart rhythm society,” Ep Europace, vol. 17, no. 9, pp. 1341–1353,
2015.

[4] A. L. Goldberger et al., “What is physiologic complexity and how
does it change with aging and disease?,” Neurobiol Aging, vol. 23,
no. 1, pp. 23–26, 2002.

[5] L. Glass, “Introduction to controversial topics in nonlinear science: Is
the normal heart rate chaotic?,” 2009.

[6] G. Valenza, L. Citi, and R. Barbieri, “Estimation of instantaneous
complex dynamics through lyapunov exponents: a study on heartbeat
dynamics,” PloS one, vol. 9, no. 8, p. e105622, 2014.

[7] R. Bhavsar et al., “Time series analysis using embedding dimension on
heart rate variability,” Procedia computer science, vol. 145, pp. 89–96,
2018.

[8] M. Costa et al., “Multiscale entropy analysis of complex physiologic
time series,” Physical review letters, vol. 89, no. 6, p. 068102, 2002.

[9] F. Beckers et al., “Effects of autonomic blockade on non-linear
cardiovascular variability indices in rats,” Clinical and experimental
pharmacology and physiology, vol. 33, no. 5-6, pp. 431–439, 2006.

[10] J. P. Saul and G. Valenza, “Heart rate variability and the dawn of
complex physiological signal analysis: methodological and clinical
perspectives,” Philosophical Transactions of the Royal Society A,
vol. 379, no. 2212, p. 20200255, 2021.

[11] A. A. Armoundas et al., “A stochastic nonlinear autoregressive algo-
rithm reflects nonlinear dynamics of heart-rate fluctuations,” Annals
of biomedical engineering, vol. 30, no. 2, p. 192, 2002.

[12] K. Sunagawa et al., “Dynamic nonlinear vago-sympathetic interaction
in regulating heart rate,” Heart and vessels, vol. 13, pp. 157–174,
1998.

[13] V. Catrambone et al., “Functional brain–heart interplay extends to the
multifractal domain,” Philosophical Transactions of the Royal Society
A, vol. 379, no. 2212, p. 20200260, 2021.

[14] C. K. Rhea et al., “Noise and complexity in human postural control:
interpreting the different estimations of entropy,” PloS one, vol. 6,
no. 3, p. e17696, 2011.

[15] D. Chelidze, “Reliable estimation of minimum embedding dimension
through statistical analysis of nearest neighbors,” Journal of Compu-
tational and Nonlinear Dynamics, vol. 12, no. 5, 2017.

[16] A. A. Faisal et al., “Noise in the nervous system,” Nature reviews
neuroscience, vol. 9, no. 4, pp. 292–303, 2008.
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