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Abstract— Heart Rate Variability (HRV) series is a widely
used, non-invasive, and easy-to-acquire time-resolved signal
for evaluating autonomic control on cardiovascular activity.
Despite the recognition that heartbeat dynamics contains both
periodic and aperiodic components, the majority of HRV
modeling studies concentrate on only one component. On
the one hand, there are models based on self-similarity and
1/f behavior that focus on the aperiodic component; on the
other hand, there is the conventional division of the spectral
domain into narrow-band oscillations, which considers HRV
as a combination of periodic components. Taking inspiration
from a recent parametrization of EEG power spectra, here we
evaluate the applicability of a unified modeling framework to
quantitatively assess heartbeat dynamics spectra as a mixture
of aperiodic and periodic components. The proposed model
is applied on publicly-available, real HRV series collected
during postural changes from 10 healthy subjects. Results show
that the proposed modeling effectively characterizes different
experimental conditions and may complement HRV standard
analysis defined in the frequency domain.

I. INTRODUCTION

The analysis of heart rate variability (HRV) series is
an important tool for studying the impact of autonomic
nervous system (ANS) control on cardiovascular activity [1]–
[4]. It has been established that such an ANS control is
influenced by the interplay between sympathetic and vagal
activities to regulate sinus node activity, producing time-
varying heartbeat dynamics, which also reflects the influence
of respiration, blood pressure, and functional brain-heart
interplay [1], [5].

Pathological processes can arise from dysfunction in ANS
control and can affect the cardiovascular system with, e.g.
hypertension [6] and heart failure [7], as well as may affect
other physiological systems (e.g. in case of diabetes and
obesity [8], and mood disorders [5]).

Quantitative assessment of ANS control on cardiovascular
activity is usually performed through HRV analysis in the
frequency domain [1], [2], which mainly reflects heartbeat
linear dynamics. The spectral analysis of HRV typically
involves the identification of three main oscillatory compo-
nents: high frequency (HF) [0.15, 0.4]Hz, whose power may
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be a biomarker of respiratory sinus arrhythmia and vagal
activity in case the respiratory frequency is in the same
band [9]; low frequency (LF) [0.04, 0.15]Hz, which may be
associated with blood pressure regulation, vasomotor tone,
and sympathovagal activity [2], [3]; and very low frequency
(VLF) [< 0.04Hz], less employed, whose physiological cor-
relates are not clarified yet. While spectral power within the
aforementioned bands are widely used in research, especially
LF power is not specific to a single ANS activity [2], [3].
This indeed limits the reliability of a HRV frequency domain
analysis, especially in case of clinical applications. Besides
linear dynamics, nonlinear and complexity analysis of HRV
series have provided powerful computational tools to dis-
cern, e.g., healthy vs. pathological heartbeat dynamics [10].
Nevertheless, physiological correlates of heartbeat nonlinear
and complex dynamics are unknown and quite hard to be
uncovered [10], [11].

In light of the above, there is the need for devising
novel methodological framework accounting for heartbeat
nonlinear dynamics, while being linked to cardiovascular
physiology, i.e., to a frequency domain analysis. To this
end, in this study we evaluate the applicability of a uni-
fied methodological framework accounting for periodic and
aperiodic components of HRV spectra.

We took inspiration from a recent methodology proposed
by Donoghue et al., who demonstrated that, in the frame
of a frequency domain analysis, electrophysiological signals
may be modelled as an aperiodic component showing an
exponentially decreasing power across increasing frequen-
cies, on which a number of oscillations are superimposed as
narrowband peaks of power [12], [13]. Indeed, in heartbeat
dynamics, the spectrum is known to manifest a similar pro-
file, with 1/f -like behavior [14]–[16], and multiple known
oscillations [3]. Note that, in presence of a spectral power
change, the usual interpretation is an associated oscillation
drift, i.e., changes in the linear dynamics of the system.
However, the same analytic band power change might be
due to several factors, as true oscillatory power variation,
alterations in the aperiodic components, shifts in the cental
frequency of the oscillation, or others [12].

Here, we assess the applicability of the aforementioned
algorithm, also known as SpecParam [12], in benchmark
experimental series gathered during tilt-table tests in healthy
subjects. The aim is to quantitatively characterize variations
in heartbeat dynamics by taking into account both periodic
and aperiodic parameters.



II. MATERIALS AND METHODS

A. Experimental Dataset

The “Physiologic response to changes in posture” dataset
[17] was used to test the proposed SpecParam algorithm
in real HRV series. This dataset is publicly accessible on
Physionet [18] and consists of data collected from ten healthy
volunteers (five males and five females, with an average age
of 28.7 ± 1.2 years). The participants provided informed
written consent for the procedure, and the signals were
obtained using a standard clinical ECG device. The exper-
imental protocol included a 5-minute resting state followed
by a series of postural changes, specifically two fast head-up
tilts (75◦ head-up tilt over 2 seconds) each maintained for 3
minutes. The experimental procedure was approved by the
local ethical committee and additional details can be found
in [17].

The ECG data were analyzed using the Pan-Tompkins
algorithm [19] to identify the R-peaks and derive the HRV
series. Such series were also preprocessed using a point-
process based model [20] to eliminate ectopic and erroneous
heartbeats and then interpolated to a frequency of 4Hz.
Power spectral density (PSD) estimation was calculated using
the standard Burg’s method [21], with order 30. Canonical
LF and HF powers estimation were performed through the
analytic integral of the extracted PSD in the associated
frequency bands, i.e. [0.04, 0.15]Hz and [0.15, 0.4]Hz, re-
spectively.

B. SpecParam model for periodic and aperiodic components
of the HRV spectrum

The SpecParam model proposed in [12], [13] formalizes
the PSD as a combination of an aperiodic component,
counting for 1/f -like profile, that covers the entire frequency
spectrum, and multiple periodic components, corresponding
to narrow-band oscillations referred to as “peaks”. The model
operates in a semi-log space, with frequency represented on
a linear scale and PSD on a logarithmic scale. The PSD
formulation is the following:

PSD = A+

Np∑
i=1

Pi (1)

where A is the aperiodic component, and the sum of Np
peak functions Pi models the periodic one. For each of the
Np peaks identified in the power spectrum, a Pi Gaussian
function is defined as follows:

Pi = ρ× exp

(
−(f̂ − µ)2

2σ2

)
(2)

where f̂ is the frequency vector, ρ is the peak power as
log10(power), µ is the central tendency frequency expressed
in Hz, and σ is the Gaussian’s standard deviation, also
expressed in Hz.

Furthermore, a Lorentzian function is employed to model
the aperiodic component, A, as follows:

A = φ− log(k + f̂χ) (3)

Fig. 1: Exemplary SpecParam model fitting on HRV spectra,
with black line indicating the original spectrum, blue dotted
line representing the aperiodic component, and red shaded
line reporting the complete model fitting (combination of the
aperiodic and two periodic components). Top panel refers
to HRV series from an exemplary subject, subject 1, in
the resting state, whereas bottom panel refers to median
spectrum across all subjects during the resting state.

where f̂ is the frequency vector; χ is the exponent; φ is the
broadband offset; and k is the so-called “knee” parameter,
formally the point of inflection of the exponential function
(i.e., when k = 0 the exponential collapses to a line
in log− log space). Fitting the k parameter allows for a
better characterization of the aperiodic component in a broad
frequency range, e.g. in the HF frequency band. Figure 1
shows an exemplary model fit for both subject specific (i.e.,
subject 1, on the top panel), and group-wise (i.e., median
across subjects, on the bottom panel) spectra recorded during
the resting state.

The algorithm described in [12] and accessible on
https://github.com/fooof-tools/fooof provides output of the
best-fit parameters for the aperiodic component (φ and χ)
and the Np identified Gaussian peaks. For each periodic
component, the algorithm outputs: i) the central frequency



Fig. 2: Boxplot statistics of the aperiodic components ex-
tracted from the model fitting for both fast tilt (green boxes)
and resting state (green boxes) experimental conditions.
Left sub-panel refer to the offset parameter; right sub-panel
refers to the exponent parameter. Asterisks indicate statistical
differences with p-value < 0.05.

µ, ii) the adjusted power, which is the distance between the
peak of the Gaussian and the aperiodic fit, associated to ρ,
and iii) the bandwidth, represented by 2σ (see Eq. 2).

The model can accurately compute these parameters even
in the presence of overlapping oscillations, reducing their
confounding effect, and automatically identify them when
present, without relying on narrow-band definitions. As an
example, if a subject does not exhibit peaks in the HF
frequency band, the algorithm will not consider periodic
components in that band, unlike canonical HRV analysis
which may still estimate HF even if an oscillation is not
present. As a result, the number of peaks Np identified as
periodic components may serve as a potential biomarker for
the analyzed time series.

Experimental results refer to the application of the Spec-
Param model for the parametrization of periodic and ape-
riodic components of the HRV spectrum on data gathered
during fast tilt and related resting state. The model is then
applied subject-wise to fit each spectrum derived from each
subject and experimental condition. Results then refer to
feature inferential statistics between sessions.

III. RESULTS

The figure 2 presents the results on the HRV aperiodic
component, which is characterized by the offset parameter
φ in equation 3 and the exponent parameter χ. A non-
parametric Wilcoxon sign-test was used to perform statistical
analysis on paired samples. In the fast tilt condition with
respect to the resting state, while the offset parameter showed
an increased trend (p = 0.08), the exponent parameter
showed a significant reduction (p = 0.009).

The HRV periodic component was characterized by the
number of peaks observed in each experimental condition, as
displayed in Table I. The Stuart-Maxwell’s test, a statistical
test for two categorical paired samples [22], showed a p-
value of 0.0327, indicating a statistically significant increase
in the number of peaks from the resting state to the fast tilt
phase.

TABLE I: Occurrences for each number of periodic com-
ponents identified in the two experimental conditions. Rows
refer to the fast tilt phase, whereas the columns refer to the
resting state. The element on the i-th row, j-th column depicts
the number of subjects having the i-th number of periodic
components identified during fast tilt and the j-th number of
periodic components identified during rest.

rest
1 peak 2 peaks 3 peaks

1 peak 1 2 0
FT 2 peaks 0 2 1

3 peaks 2 2 0

Fig. 3: Boxplot statistics for the model periodic components
extracted from the model fitting for both fast tilt (green
boxes) and resting state (blue boxes) experimental condi-
tions. Left sub-panel refer to the central frequency parameter
(µ); central sub-panel refers to the adjusted-power parameter
(ρ); right sub-panel refers to the bandwidth parameter (2σ).

Figure 3 illustrates the experimental results for the pe-
riodic component identified through model fitting in both
experimental conditions. This component is defined by the
peaks identified by the algorithm in equation 2, including
the central frequency (µ), the adjusted-power parameter (ρ),
and the bandwidth parameter (2σ). No statistically significant
differences were found in the parameters of the HRV periodic
component between sessions, apart from the previously noted
differences in the number of peaks detected.

Figure 4 illustrates the experimental results for the canon-
ical LF (left sub-panel) and HF (right sub-panel) estimation
given from the integral of the PSD in the associated fre-
quency bands, in both experimental conditions. While trends
are in agreement with expected changes (i,e., reduced vagal
activity during fast tilt), no statistically significant differences
were found using these canonical powers, as already reported
in previous studies [2].

IV. DISCUSSIONS AND CONCLUSION

This paper presents a feasibility study to demonstrate
the potential of a novel formulation for modeling the PSD
of heartbeat dynamics. The SpecParam model, originally
proposed in [12] for fitting the PSD of neural dynamics,
has been adapted to fit the PSD of HRV series. The model
represents the spectrum as a combination of an aperiodic and
multiple periodic components in a semi-log space, providing
a more comprehensive analysis compared to the traditional
HRV spectral analysis.

The model was applied to a benchmark dataset of car-
diovascular series obtained during postural changes [17].



Fig. 4: Boxplot statistics for the canonical LF (left sub-panel)
and HF (right sub-panel) power estimation on both fast tilt
(green boxes) and resting state (blue boxes) experimental
conditions.

Despite important sympathovagal changes occuring during
postural changes with respect to the resting state [2], [17],
canonical spectral power analysis and narrow-band division
in HF and LF has failed in finding significant differences in
such a limited dataset [2]. Our experimental results showed
significant differences between fast tilt and resting state
sessions in terms of the aperiodic component, specifically the
exponent parameter χ, as well as in the number of periodic
components Np. A possible explanation might be that the
canonical bands estimations may be greatly influenced by
the shape of the spectra in different experimental conditions.
Narrow-band power analysis or 1/f -like behavior analysis
alone might not capture all aspects of the underlying auto-
nomic control phenomena.

In terms of the algorithm’s application to heartbeat dy-
namics series, further development may be required to
comprehensively characterize heartbeat dynamics, such as
accounting for the total power of the periodic component,
which was currently not included in this feasibility study.
Limitations include the potential influence of the PSD es-
timation procedure on the extracted aperiodic or periodic
parameters, which requires further investigation in future
studies on both heartbeat and neural series.

In conclusion, the described model is feasible for heartbeat
dynamics analysis and requires further application to diverse
datasets to understand the physiological implications of the
extracted parameters in both physiological and pathological
conditions.
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