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This study introduces a novel estimation methodology for identifying non-stationary physiological noise, specifically
applied to complex biomedical signals such as heart rate variability (HRV) series. By treating physiological noise as
a dynamical recursive realization of independent and identically distributed (IID) Gaussian random variables, we em-
ploy an information-theoretic quantifier, the Approximate Entropy, to estimate noise power through a sliding window
process. Our method effectively identifies noise levels in synthetic time series with varying dynamical noise powers,
demonstrating accuracy even with relatively short window lengths. We further exploit this approach on real cardiovas-
cular variability recordings during different postural changes, namely stand-up, slow tilt, and fast tilt. The results reveal
significant time-resolved variations in physiological noise, functionally linked with changes in autonomic regulation
due to postural shifts. Specifically, in the absolute sense, physiological noise in the cardiovascular system tends to in-
crease in the first 60s of upright position with respect to a supine resting state, directly following sympathetic dynamics
and inversely following vagal dynamics. Then, over 60s physiological noise tends to decrease with respect to the resting
state, almost monotonically. Moreover, results corroborates earlier findings where elevated stochasticity in HRV series
biases complexity assessment through entropy analysis. Our work highlights the method’s robustness and potential to
improve the understanding of physiological noise dynamics, with implications for more accurate cardiovascular signal
analysis and potential clinical applications.

We provide key insights into the role of stochasticity in
non-stationary cardiac autonomic regulation during sym-
pathovagal changes. By leveraging a sample-by-sample
nonlinear Approximate Entropy profile, our approach ac-
curately captures time-resolved variations in physiological
noise, even with short window length. The findings indi-
cate that reduced vagal activity and increased sympathetic
activity are associated with higher stochasticity in the car-
diovascular system. This methodology enhances the un-
derstanding of physiological noise dynamics and improves
the accuracy and reliability of cardiac complexity assess-
ments, with promising implications for clinical monitoring
and decision support systems.

I. INTRODUCTION

Time series stationarity refers to the constancy of the sys-
tem’s statistical properties over time1. The concept of station-
arity plays a fundamental role in time series analysis. Station-
arity is often assumed in many analytical tools derived from
both linear and nonlinear signal processing frameworks, in-
cluding, autoregressive models, embedding dimensions, spec-
tral analysis, entropies, information theory frameworks, and
models or predictions of data series using local linear models,
radial basis functions, neural networks, and nonlinear stochas-
tic processes2,3.

Physiological signals are susceptible to various external
factors, e.g. measurement artifacts, and intrinsic dynamic be-
haviors, potentially resulting in non-stationarity or long-term

correlations. Non-stationarity makes frequency domain anal-
ysis simply unreliable and may generate erroneous chaotic-
like behavior based on some properties of their nonlinear
features, such as correlation dimension and Kolmogorov
entropy4.
The cardiovascular system is primarily explored through the
analysis of heart rate variability (HRV) time series, which
represent the time intervals between consecutive R peaks in
the electrocardiogram of humans. HRV is regulated by the
concurrent action of the sympathetic and parasympathetic
branches of the autonomic nervous system (ANS), as well as
by baroreflex and respiration activity5. Particularly, the car-
diovascular system is well-recognized for its nonlinear and
non-stationary nature of its dynamics6, given by complex self-
regulating processes which are characterized by long-range
dependence6 - reflected in the 1/f spectrum scaling law -,
and that are associated with multifractality, requiring a large
number of exponents to characterize their scaling properties7.
The nonlinear interplay in ANS dynamics8,9 makes HRV se-
ries exhibit complex patterns10,11 marked by unpredictabil-
ity, bifurcation, intermittent and scale-invariant behavior7.
In particular, the multifractal nature of physiological pro-
cesses - also evident in cardiovascular activity - has played
a key role in several domains including causal and network
modeling12–16, as well as characterization of specific patho-
logical conditions17–19.

To this end, the time and frequency domain analyses of
long-term (e.g. 24h) HRV series should be performed in
shorter time segments, typically around 5 minutes, and then
outcomes should be aggregated20.

Another critical component of cardiovascular dynamics is
the presence of intrinsic, recursive stochastic components,
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also known as physiological noise21. For many years, the
challenge of discerning deterministic and stochastic compo-
nents in heartbeat dynamics has been investigated. However,
a universally accepted characterization is still lacking. The
debate continues on whether cardiovascular variability series
are chaotic (and thus deterministic) or purely stochastic. This
uncertainty arises from the lack of a definitive model for RR
intervals, despite extensive research. The complexity of HRV
series may be discussed without clearly labeling it as chaotic
or stochastic.
This ambiguity is reflected in past studies, as noted in a semi-
nal paper22. To illustrate, some works, using scale-dependent
Lyapunov exponents, highlight varying shades of stochas-
ticity across patho-physiological states23. Others, employ-
ing the Largest Lyapunov Exponent, suggest a chaotic na-
ture rooted in autonomic control loops24, as also observed
in atrial fibrillation through permutation entropy and miss-
ing ordinal patterns25. This chaotic behavior may be in-
fluenced by stochastic fluctuations in acetylcholine26, while
other studies point to coupled deterministic oscillators and
respiratory-driven stochastic components27,28. In our study,
rather than aligning strictly with one perspective, we adopt a
hybrid framework: cardiovascular dynamics is modeled as the
output of a nonlinear deterministic system9 perturbed by dy-
namical noise, which irreversibly modifies the behavior of the
system, leading to an overall alteration in its dynamics. In this
context the heartbeat series reveal inherent physiological noise
due to the continuous dynamic interaction of the cardiovascu-
lar system with various other physiological subsystems (such
as endocrine, neural, and respiratory systems)29, as well as
numerous self-regulating, adaptive biochemical processes11.
Essentially, such an informative noise not only has the poten-
tial to substantially impact the functioning of physiological
systems but is also an integral aspect of their dynamics. Phys-
iological systems are recognized as complex dynamical sys-
tems, particularly nonlinear systems influenced by stochas-
tic inputs (i.e., noise), which can lead to the emergence of
chaotic regimes30,31. Recently, this physiological noise has
been quantified in physiological time series21,32, especially in
HRV time series, characterizing different pathophysiological
states within a framework that does not necessitate knowledge
of the underlying deterministic dynamics, often unknown in
physiological time series or real-world data in general.

To our knowledge, no previous attempts have been made
to identify physiological noise non-stationarity as an inher-
ent characteristic of the cardiovascular system. In this study,
we build on the approach outlined in33 to develop an effec-
tive methodology that captures dynamical changes in phys-
iological noise over time. First, the proposed sample-wise
physiological noise estimation methodology is validated using
synthetic data perturbed by dynamical non-stationary noise.
Then, the method is applied to real HRV time series to assess
noise variability during postural changes, which are known
to induce strong sympathovagal changes and, consequently,
non-stationarity in the HRV series34–36. Specifically, stand-
ing causes a decrease in blood pressure that leads to in-
creased heart rate, cardiac contractility, and peripheral vas-
cular resistance37. Moreover, the transition from rest to an

upright position is associated with a decrease in heartbeat
complexity38–40 as well as a decrease in HF power35. There-
fore, while the resting supine position is associated with a
dominance of cardiac vagal activity41, the upright position is
associated with a dominance of sympathetic activity and va-
gal withdrawal, the dynamics of which depend on the kind of
transition35. The tilt-table test is thus commonly employed
as a gold-standard protocol to induce sympathovagal changes
and diagnose conditions such as vasovagal syncope (fainting)
and orthostatic hypotension.

II. NON-STATIONARY PHYSIOLOGICAL NOISE

The sampled physiological signal xn(ε) is regarded as an
output of a dynamical system (X ,µ,F), where µ is the in-
variant probability measure of the phase space X on which
the differentiable map F defines the deterministic dynamical
model, and {εn}n are realizations of physiological noise mod-
eled as independent and identically distributed (IID) Gaussian
random variables N (0,σ). In a general case, physiological
noise perturbs the system dynamics according to:

xn = F(xn−1, . . . ,x1)+ εn (1)

where xn are the points belonging to the space X . It is as-
sumed that the time series non-stationarity is due to the related
stochastic components, i.e. the dynamical noise power.

Hereinafter, we focus on heartbeat dynamics series whose
samples, occurring in the continuous time t, are intrinsically
discrete and are associated with the R-wave events {u j}N

j=1
detected from the ECG. To this extent, RR j = u j−u j−1 > 0
denotes the jth R–R interval.

Formally, for t ∈ (0,T ], the observation interval, and 0 ≤
u1 < · · · < u j < u j+1 < · · · ≤ T the times of the heartbeat
events, let us define

N(t) = max{ j : u j ≤ t}

as the sample path of the associated counting process. Its dif-
ferential, dN(t), denotes a continuous-time indicator function,
where dN(t) = 1 when there is an event, and dN(t) = 0 oth-
erwise. The left continuous sample path is defined as

Ñ(t) = N(t−) = lim
τ→ t−

N(τ) = max{ j : u j < t}

such that the cardiovascular system dynamics may be de-
scribed as:

RRÑ(t) = F(RRÑ(t)−1, . . . ,RRÑ(t=0))+ εÑ(t) (2)

with Ñ(t) is the index of the previous R-wave event before
time t and F is an unknown, linear or nonlinear function.

Within this framework, it is possible to estimate the physi-
ological noise standard deviation σ without knowing the map
F , by using the information-theoretic quantifier Approximate
Entropy (ApEn)42, and applying the closed formula33:
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log(σ |W )≈ ApEn({RRÑ(t)(ε)}
T ′
t=1,m,r)+ log(r/

√
π) (3)

considering observations of RR intervals within a time win-
dow W defined in (0,T ′], for any embedding dimension m,
when the tolerance or radius r is smaller than the noise stan-
dard deviation σ . More details on the noise estimation pro-
cedure and its theoretical foundation can be found in32,33.
The procedure described above requires the stationarity of the
physiological noise process within the time interval t ∈ (0,T ′],
implying that the physiological noise power does not change
over the entire series.

Next, we proceed with a non-stationary, sample-wise esti-
mation of the physiological noise process.

Let us consider s subsets of the sampled series RRÑ(t)(ε(t)).
The physiological noise process is stationary within each
subset, such that there exists a finite sequence {εÑ(t)}

T ′
t=t j

∼
N (0,σÑ(t)). Therefore, we can evaluate the non-stationary
physiological noise standard deviation as follows:

ψRR(t ′,Ht ′ ,ε(t
′))≈

exp(ApEn({RRÑ(t)(ε(t))}
T
t=0W (t − t ′),m,r(t ′)))r(t ′)/

√
π

(4)
where Ht ′ = (uÑ(t ′),RRÑ(t ′),RRÑ(t ′−1), ...,RRÑ(t ′−T ′−1)).
Practically, one does not know a priori the temporal in-

tervals where noise achieves stationarity. Thus, we select a
rectangular time window W comprising w samples and, for
each subseries εn

i+w
n=i , we perform a sample-wise estimation of

ψRR(i,Ht ′ ,ε(t ′)).

III. EXPERIMENTAL DATA AND SETUP

We tested the proposed sample-wise estimation methodol-
ogy in detecting variations in noise non-stationarity in syn-
thetic time series corrupted with different levels of dynami-
cal noise. The noise estimation is performed sample-wise on
overlapping windows of a fixed length that slide along the en-
tire time series.

After verifying the reliability of the method, we applied
the noise estimation to heartbeat time series gathered from
a dataset comprising HRV recordings of subjects undergoing
different postural changes (stand-up, slow, and fast tilt). This
was performed to determine if the physiological noise power
varies during these different tasks.

Analytical Data

The proposed approach has been tested on synthetic series
gathered from:

Discrete-time Logistic Maps: which are maps of the fol-
lowing form

xn+1 = λxn(1− xn) (5)

where λ is a real-valued parameter in the interval [0,4] and at
step n, all the xn belong to the interval [0,1]. The discrete-time
logistic map is a simple mathematical model that describes the
dynamics of a population over time. It is a nonlinear differ-
ence equation that can exhibit a wide range of behaviors, from
stable equilibrium points to chaotic oscillations, accordingly
to the parameter λ . Numerical simulations in this work are
performed with λ = 3.5, in periodic regime and with λ = 4,
namely in chaotic regime (Kolmogorov-Sinai entropy > 0).
Dynamical noise effects are imposed by adding a noise sam-
ple at each step in 5.

For each value of the parameter λ above, we generated 50
time series with non-stationary Gaussian dynamical noise.

Autoregressive models of order p (AR(p)): the realization
of an autoregressive model of order p, denoted as AR(p), can
be expressed as follows:

yn +
p

∑
i=1

aiyn−i = εn,

where yn is the n-th observation in the time series, ai are the
p time-invariant coefficients, and εn is the innovation pro-
cess, namely a realization of an IID Gaussian stochastic vari-
able. We performed our analyses selectingan AR model with
order p = 7 (AR(7)) with the following parameter values:
a1 = −1.2710, a2 = 0.4222, a3 = −0.0528, a4 = −0.0544,
a5 = 0.0879, a6 = 0.0446, a7 =−0.1760. These values were
obtained by fitting the Yule-Walker equations to a random ex-
emplary Heart Rate Variability series of a healthy subject from
the database https://physionet.org/content/nsrdb/
1.0.0/, considering only the first 500 points to avoid non-
stationarity. The order p = 7 has been selected because in
computational physiology cardiovascular dynamics has been
modeled through an AR(7) model43.

We considered 50 series for the AR(7) model with non-
stationary Gaussian noise.

Synthetic HRV series: the non-stationary noise detection
has been applied also on noisy HRV series generated by the
well-known integral pulse frequency modulation (IPFM)44

model. The latter employs a network of interconnected os-
cillators, with each oscillator representing a distinct aspect of
the baroreflex and autonomic nervous system.

The sympathetic oscillator is characterized by a sinusoidal
waveform with a frequency of ωs and represents the combined
low-frequency (LF) power of the HRV spectrum, incorporat-
ing vasomotor activity. Conversely, the parasympathetic res-
piratory oscillator is modeled as a sinusoidal waveform with
a frequency of ωp and aims to capture short-term activity af-
fecting the sinus node through the parasympathetic nervous
system.

The autonomic activity, i.e. the combination of the
parasympathetic and sympathetic activities, is represented by
the quantity

m(t) =Css(t)+Cp p(t)

where s(t) and p(t) denote the sinusoidal waveform of the
sympathetic and parasympathetic activity, respectively, and
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where the coupling constants Cs and Cp indicate the degree
to which the respective oscillator influences the sinus node
oscillator, with s representing sympathetic and p representing
parasympathetic modulation.

The heartbeat series, instead, is generated by integrating an
input signal until it reaches a preset threshold of unity. At this
point, a pulse is produced and the integrator is reset to zero.
Mathematically, the time tk of the kth R wave is given by

1 =
∫ tk+1

tk
[HR+m(t)]dt (6)

where m(t) is the input signal of the autonomic activity and
HR represents mean heart rate. Further details on the model
can be found in44.

In this work, ωs = 0.1Hz, ωp = 0.25Hz, Cs =Cp = 0.15,
HR= 1.1 with a sampling rate of 250Hz for the generation of
the HRV signals.

50 HRV noisy series of 20000 samples have been gener-
ated. We simulated the dynamical noise action by adding
a sample of the noise realization process at the integrand
function of each integration step (6).

To reproduce the effects of non-stationary noise, for all the
previous models, we concatenated 4 realizations of the same
models consisting of 5000 samples, where the ith series is
corrupted by dynamical noise according to eq. (2) as a re-
alization of IID random variables following the distribution
N (0,σi(W )), where: σ1 = 0.05,σ2 = 0.1,σ3 = 0.15,σ4 =
0.2 for the logistic maps; σ1 = 0.5,σ2 = 1,σ3 = 1.5,σ4 = 2
for the AR(7) model; σ1 = 0.8,σ2 = 1.2,σ3 = 1.6,σ4 = 2 for
the IPMF HRV model.

To ensure that all samples in the time series remain within
the range of [0,1] without drifting, we apply a modulo 1 re-
duction at each step of (5) for the logistic map.

Eventually, each synthetic series has 20000 samples formed
by 4 different realizations (5000 points each) where an always
different noise realization has been superimposed.

We have applied the sample-wise non-stationary noise
detection with different overlapping time window compris-
ing w = 100,150 and 200, with an embedding dimension
m = 2 and letting the radius r spanning the time se-
ries amplitude within the window with a resolution step
∆r = 0.001×{time series range} for all the series.

The sensitivity of the proposed method has been tested by
generating 30 synthetic time series, each containing 10000
samples. Each series consisted of 20 segments of 500 points
derived from a nonlinear Logistic map with a parameter of
λ = 3.5, without loss of generality. These segments featured
increasing dynamical noise levels, ranging from 1% to 20%
with a 1% step with respect to the time series amplitude.
Time-variant noise estimation techniques are applied using
sliding windows of 100, 150 and 200 samples.

Moreover, to validate the proposed method’s independence
from the influence of underlying dynamical systems’ behav-
iors, in contrast to conventional HRV quantifiers, we gener-
ated 30 time series by concatenating 3000 points from a lo-

gistic map with parameter λ = 3.5 and 3000 points from a
logistic map with parameter λ = 4, both perturbed with zero-
mean Gaussian noise with a standard deviation of 0.05. The
two maps exhibit different dynamics: the first is periodic,
while the second is chaotic. On this maps we have computed
sample-wise STD and noise estimation within a sliding win-
dow of 1000 samples.

Real HRV series during Postural Changes

We tested the sample-wise noise estimation power on
real HRV series gathered from the Physiologic response
to changes in posture dataset34, publicly available45. The
dataset was generated to measure the extent of similarity in
hemodynamic responses observed during stand-up, rapid, and
slow head-up tilt (HUT). This initiative stems from limited
understanding of the mechanisms involved in orthostatic
intolerance, which refers to the failure of the hemodynamic
system and reflex mechanisms to maintain blood pressure
homeostasis. The dataset comprises data collected from
ten healthy volunteers (five males and five females, with
an average age of 28.7 ± 1.2 years). The participants gave
informed written consent for the procedure, and the signals
were acquired using a standard clinical ECG device. The
experimental protocol consisted of a 5-minute resting state,
followed by a series of postural changes, from the horizontal
to the vertical position and returned to the horizontal position
either through a “slow” tilt (50 s from 0 to 70°), or “fast”
(i.e., 2 s from 0 to 70°), each lasting for 3 minutes. Stand-up
sessions were also included. Approval for the experimental
procedure was obtained from the local ethical committee, and
further information can be found in34. The ECG data under-
went analysis using the Pan-Tompkins algorithm46 to detect
the R-peaks and generate the HRV series. Additionally, the
series underwent preprocessing using a point-process-based
model47 to remove ectopic and erroneous heartbeats. Further
information can be found in34.

We performed sample-wise non-stationary noise detection
with various overlapping time windows, each consisting of
150 data points. We set the embedding dimension to m = 2
and adjusted the radius r to cover the amplitude of the time
series within the window, using a resolution step of ∆r =
0.001× time series range for all the recordings.

The non-stationarity of the real HRV series and of the re-
lated estimated noise time series, restricted to 60s before up
to 180s after every postural change, are assessed through the
Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test with null hy-
pothesis of stationarity (against the alternative hypothesis of
non-stationarity) and the complementary Phillips-Perron (PP)
test (null hypothesis of non-stationarity and alternative hy-
pothesis of stationarity), with a significance threshold of 0.05.

Statistical differences between superimposed noise levels,
as well as supine vs. upright positions were assessed through
the non-parametric Wilcoxon test for paired samples with the
null hypothesis of equal noise levels median before and after
postural changes.
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This study received approval from the University of Pisa’s
Committee of Bioethics under review number 19/2021 and ad-
hered to the principles outlined in the Declaration of Helsinki.

FIG. 1. Sample-wise noise estimation for synthetic maps expressed
as median (black line) ± median absolute deviation (shaded area)
among 50 realizations of the five synthetic data models individuated
by the rows. Red lines indicate true reference values. In each panel,
the local noise std (y-axis) is illustrated along with the time series
length(x-axis). Estimations have been performed with embedding
dimension m = 2, ∆r = 0.001×{time series range} and within an
overlapping time window starting from the sample and comprising w
points ahead. Window lengths are indicated by the figure columns.

IV. RESULTS

Synthetic data

Analytical maps: Figure 1 presents the results of sample-
wise noise estimation for synthetic data gathered from the lo-
gistic maps and the AR(7) model. Each row refers a distinct
model, while each column indicates the length of the sliding
window w used for the local noise estimation.

In each panel, the sample-wise noise estimation (y-axis) is
depicted in terms of the median and median absolute deviation
(MAD), shown with thick lines and shaded areas, respectively,
across 50 realizations within a time window starting from the
current point (x-axis) of the time series.

The proposed method effectively distinguishes different
levels of non-stationary noise in time series, both qualitatively
and quantitatively, even when the sliding window contains a
small number of samples. The red horizontal dashed lines cor-
respond to the four variations of injected noise, as discussed
in the previous section. Generally, increasing the sliding win-
dow size improves noise detection accuracy by reducing dis-
persion around the median value. The method also identifies
transition zones where statistical noise power changes, which
are aligned with the steps of the horizontal red dashed lines.

Specifically, higher levels of encountered non-stationary
noise exhibit greater variability, indicating the need for a
larger number of samples to accurately identify the underlying
noisy dynamics. For the logistic map in the periodic regime
(λ = 3.5) and the AR(7) model, the estimated noise values

closely match the actual superimposed ones. In contrast, for
the logistic map in the chaotic regime (λ = 4) there is a slight
overestimation that tends to decrease with larger sliding win-
dows. Additionally, noise estimates are smooth for all models
except for the chaotic logistic map, which exhibits spikes that
are mitigated by using longer time windows.

For the IPFM HRV model, the results in Figure 2 show,
across different rows, the mean, standard deviation (STD),
root mean square of successive differences (RMSSD), as well
as the low-frequency (LF) and high-frequency (HF) powers,
and the proposed physiological noise estimation ψRR. It is ev-
ident that while the window length does not significantly af-
fect the estimates, all metrics increase as physiological noise
increases, except for the mean values, which remain approx-
imately constant in terms of central tendency. Importantly,

FIG. 2. Sample-wise statistics and noise estimation for the IPFM
model. Sample-wise estimates of mean, STD, RMSSD, LF power,
HF power, and estimated physiological noise are reported on the
rows for the IPFM synthetic model, computed across 50 realiza-
tions. Each panel illustrates the evolution of these statistics (y-axis)
over time (x-axis) within overlapping windows of varying lengths
(columns). For LF and HF power estimation, time series were in-
terpolated to 4 Hz. Noise estimation was performed using an em-
bedding dimension (m) of 2 and a radius (r) that spans the time se-
ries amplitude within the window, with a resolution step of ∆r =
0.001×{time series range}. The shaded area in each panel repre-
sents the median absolute deviation (MAD) around the median value
(black line).

these results demonstrate that changes in time and frequency
domain parameters, which are usually linked to sympathova-
gal and vagal activity changes, may actually be generated by



6

underlying stochastic changes rather than cardiac neural ac-
tivity. Indeed, such HRV standard estimates do not discern
between deterministic and stochastic dynamics.

To further demonstrate this evidence, regarding the possi-
ble quantifiers’ dependence on the underlying dynamics, re-
sults in estimating STD and time-varying noise within over-
lapping 1000-sample windows of Figure 3 show that STD
significantly changes between maps, whereas our proposed
method does not exhibit such variability. This aligns with our
theoretical claim that our method detects noise as an intrin-
sic component of the system, independent of the underlying
dynamics.

FIG. 3. Sample-wise STD and noise estimation for exemplary se-
ries with two different dynamics. This figure depicts sample-wise
estimates of standard deviation (STD) (top row) and encountered
noise (bottom row) for 30 realizations. Each realization consists of
6000 samples, combining 3000 samples from a periodic logistic map
(λ = 3.5) with 3000 samples from a chaotic logistic map (λ = 4).
Both segments are corrupted by the same level of dynamic noise,
generated from a normal distribution with mean 0 and standard de-
viation 0.05. The vertical red line marks the transition between the
periodic and chaotic segments. Sample-wise estimates were calcu-
lated using overlapping windows of 1000 samples. The black line
represents the median value, and the shaded area depicts the median
absolute deviation (MAD) across the 30 realizations.

Sensitivity: The results, shown in Figure 4, illustrate the
median absolute noise sample-wise estimation (black line)
across the 30 time series, with the dispersion around the me-
dian (shaded areas), using windows of 100, 150 and 200 sam-
ples (from left to right). The linear fit (red line) of the median
estimated noise is also represented. The figure highlights dis-
tinct steps corresponding to the varying noise levels. These
transitions are often preceded by spikes, which are artifacts
coinciding with abrupt changes in noise magnitude. Longer
window sizes tend to improve the accuracy of the estimated
noise levels and reduce the prominence of these spikes, re-
sulting in smoother intervals corresponding to the estimated
noise levels. The slope of the red line, fitted on the median
noise estimates, indicates the method’s sensitivity. Since the
slopes of the fitted lines were 0.0228%, 0.0166%, and 0.013%

from the smallest to the largest window, we can conclude that
the length of the time window does not significantly affect the
time-varying estimation.

FIG. 4. Sensitivity analysis on the Logistic map with (λ = 3.5. The
figure displays the median (black line) of the time-varying noise es-
timated over 100-, 150- and 200-sample windows (from left to right,
respectively) across 30 realizations of the logistic map. The shaded
area represents the median absolute deviation, and the red line is the
fitted median. The x-axis shows the introduced dynamic noise levels,
while the y-axis displays the estimated noise levels as a percentage
of the series amplitude. The variation of injected noise is of 1% be-
tween consecutive levels.

Real Data

Non-stationarity: Regarding real data, non-stationarity of
all the HRV and estimated noise series has been assessed by
the rejection of null hypothesis for the KPSS test together with
the non-rejection of the null hypothesis of the PP test. A visual
representation of the non-stationarity in the estimated noise
time series is shown in Fig. 5, where spectrograms of the
estimated absolute noise time series during postural changes
are reported.

Physiolgical Noise Estimation: Numerical results of the
real data analysis are reported in Fig. 6 as the sample-wise
median ± MAD among subjects, normalized according to the
number of trials, of the encountered sample-wise noise esti-
mation across the several trials of postural changes. The fig-
ure illustrates the physiological noise trends during the slow,
fast tilt, and stand-up transitions from the supine resting state
to the vertical position. The middle panel represents the stan-
dardized noise measure with respect to the standard deviation
of the signal enclosed in the window. At the bottom panel,
the average RR interval ± the RR interval standard deviation
across all the trials of postural changed are illustrated. In all
the figures, noise estimates and HRV series have been inter-
polated over the recording time, with a frequency of 2Hz, to
allow comparisons among all the rest and tilt phases of the
HRV recording. Starting from the postural change onset, the
estimated physiological noise begins to reflect the effects of
the postural changes. Descriptive and inferential statistics are
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FIG. 5. Exemplary Spectrograms of the estimated absolute noise
time series. The figure represents the spectrograms of the estimated
noise time series from the HRV recording of subject 12726 of the
dataset of postural changes. Each panel corresponds to the first dif-
ferent encountered transition form rest to postural tasks. The dashed
black line indicates the beginning of the task. Blue color denotes
higher magnitude. Spectrograms are generated from the interpola-
tion of absolute noise time series at 2Hz, from 30s before up to 90s
after the postural change from rest condition. The spectrograms are
computed with the short-time Fourier transform, by using Hanning
window with amplitude of 20s and with the temporal shift of 0.5s -
97.5% of overlap between consecutive windows.

reported in Table I for all experimental sessions. It is evident
that the sliding windows capture transitions from rest to postu-
ral changes as expressed by an increase in absolute physiolog-
ical noise levels, especially in case of fast and stand-up tilts.
After about 60s from the postural change onset, the absolute
physiological noise levels decrease significantly (Wilcoxon
test p-value less than 10−6). It is possible to notice that all
HRV features but the LF power are significantly affected by
the postural changes.

V. DISCUSSIONS AND CONCLUSIONS

In this study, we present a method for detecting physio-
logical noise non-stationarity in complex physiological time
series. The proposed framework treats physiological noise
as a recursive realization of IID random variables, typically
Gaussian N (0,σ). Despite the potential for alternative noise
distributions, the inherent recurrence of physiological noise
causes it to accumulate within the system through repeated
iterations. Thus, positing that the physiological noise is

FIG. 6. Physiological Noise in the TILT dataset. The figure shows
the group-wise median (black lines) and median absolute deviation
(shaded areas) values of absolute noise (upper panels) and normal-
ized noise (middle panels), as well as RR intervals before and after
the onset (indicated by the vertical red line) of postural change tasks
(slow tilt, fast tilt, and stand-up). The normalized physiological noise
is calculated relative to the series’ standard deviation. Blue shaded
areas indicate the time window during which the postural changes
are performed.

composed of independent and identically distributed random
variables, where the statistical distribution remains constant
across iterations, the central limit theorem predicts that the
aggregated sum will tend towards a Gaussian distribution.
This detection is achieved through a window-sliding process,
which returns a sample-wise physiological noise power es-
timation ψRR(t ′,Ht ′ ,ε(t ′)) and its variability throughout the
entire series. We tested the method on four different classes
of synthetic time series and applied it to real cardiovascu-
lar data gathered from a publicly available postural changes
dataset to detect possible variations during significant sympa-
thovagal changes, recognizing the fundamental, intrinsic role
of stochastic dynamics in the cardiovascular system.

For synthetic data, the method effectively differentiated dif-
ferent levels of superimposed dynamical noise using a rel-
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TABLE I. P-values of resting vs. postural changes. The table re-
ports the statistics (median and median absolute deviation) computed
over a 15-second window before the task and a similar window at the
end of the task, for the encountered noise levels sample-wise STD,
mean, RMSSD, LF and HF power. The significance of the differ-
ences in noise levels due to postural changes is confirmed by the
p-values from the Wilcoxon tests, which test the null hypothesis of
equal medians before and after the postural alterations.

Rest Slow Tilt Rest Fast Tilt Rest Stand Up

Absolute Median 0.0264 0.0185 0.0264 0.0201 0.0273 0.0197
Noise [s] MAD 0.01977 0.0084 0.0179 0.01 0.0222 0.0106

p-value < 10−10 < 10−10 < 10−10

Normalized Median 62.1906 50.0448 60.6042 44.34795 59.5101 43.343
Noise MAD 8.7 8.23 7.34 9.84 9.24 8.56

p-value < 10−10 < 10−10 < 10−10

Mean [s] Median 0.8691 0.7529 0.905 0.7792 0.9362 0.7874
MAD 0.13 0.0665 0.1053 0.0594 0.1106 0.068

p-value < 10−10 < 10−10 < 10−10

SDNN [s] Median 0.0445 0.0375 0.044 0.0482 0.0451 0.0509
MAD 0.0258 0.0146 0.0274 0.0173 0.0414 0.0174

p-value < 10−10 0.1305 < 10−10

RMSSD [s] Median 0.0318 0.0193 0.0323 0.0205 0.0351 0.0213
MAD 0.0309 0.0104 0.0236 0.013 0.0361 0.0131

p-value < 10−10 < 10−10 < 10−10

LF [s2] Median 0.001 0.0009 0.001 0.0011 0.0012 0.0016
MAD 0.0023 0.001 0.0017 0.0018 0.0032 0.0025

p-value 0.3281 0.1935 0.3885

HF [s2] Median 0.0005 0.0002 0.0006 0.0002 0.0006 0.0003
MAD 0.0029 0.0007 0.0018 0.0008 0.0044 0.0013

p-value < 10−10 < 10−10 < 10−10

atively short window length of only 100 samples, as con-
firmed by sensitivity analysis which retraces the imposed vari-
ation and validates the noise changes found by our time-
variant method. This is notable because the noise estimation
algorithm33 theoretically requires a large number of samples
to perform accurately. The accuracy of sample-wise noise
estimation along the series improves with larger time win-
dows, as evidenced by decreased dispersion around the me-
dian value, resulting from a more precise characterization of
the approximate entropy quantifier. Moreover, for periodic
dynamics and autoregressive models, the sample-wise noise
estimation appears extremely accurate. In contrast, for chaotic
dynamics, we observe a slight overestimation of noise levels
due to the need for more samples to properly distinguish the
dynamics from the noise presence. In smaller sample obser-
vations, the series might appear more random, obscuring the
underlying dynamical pattern.

A separate discussion is necessary for IPFM HRV model,
as its formulation inherently involves stochastic perturbations
interacting with a dynamical component or multiple integra-
tion processes. Indeed, the noise observed in IPFM HRV
models tends to be significantly underestimated. This dis-
crepancy may be attributed to the unique nature of the IPFM
model, which generates heartbeat series by integrating an in-
put signal until it reaches a predetermined threshold param-
eter. When noise is introduced into the integration process,
predicting how the noise samples interact becomes challeng-
ing. There’s a possibility that they cancel each other out, given
their mean is 0, as per the assumptions. Nonetheless, the pro-

posed method distinctly discern between different levels of
dynamical noise in a time-resolved way. All classical time
and frequency domain quantifiers exhibit a similar trend to our
time-varying noise estimate, which is expected given the re-
lationship between noise and signal variability. However, our
method, which is less sensitive to underlying dynamics, re-
veals that changes in time and frequency domain parameters,
commonly associated with sympathovagal and vagal activity,
may be attributed to stochastic fluctuations rather than neural
mechanisms. This has also been further demonstrated by the
synthetic data analysis shown in Figure 3.

The proposed method finds a natural application on the
HRV time series gathered from the postural changes dataset,
since both the PP and KPSS tests confirmed the non-
stationarity of the physiological time series undergoing the
different tasks. Results showed that physiological noise in
the cardiovascular system tends to increase from supine rest
to upright standing. This increase is more pronounced during
the first 60s of stand-up or fast tilt transitions from rest. Sub-
sequent changes show a significant decrease in physiological
noise levels with respect to the supine resting state. Normal-
ized physiological noise dynamics significantly decreases af-
ter posture changes. Specifically, the proportion of heartbeat
dynamics explained by noise is around 60-70% during rest
and decreases to 30-40% in the upright position. Interestingly,
the transition from rest to slow tilt is associated with a mini-
mum physiological noise approximately 120 seconds after the
tilt onset, while the minimum is reached around 60 seconds
after the fast tilt and stand-up tasks. These findings demon-
strate that physiological noise is not merely a constant in the
dynamics, but rather an intrinsic and non-stationary compo-
nent of the system — as confirmed by statistical tests and by
the time-dependent frequency modulation in the spectrograms
of the estimated noise time series — thus variable and infor-
mative of the system’s state.

At a speculative level, these results suggest that the intrinsic
stochasticity in cardiovascular dynamics is primarily driven
by an increase in sympathetic activity coupled with a with-
drawal of vagal activity, as absolute physiological noise trends
mirror those of sympathetic activity35. Conversely, normal-
ized noise dynamics appear to follow vagal activity35. No-
tably, the reduction in vagal and normalized noise due to pos-
tural changes is consistent with earlier research showing re-
duced cardiovascular complexity during posture changes39.
From a biochemical perspective, while its precise origin re-
mains elusive, this non-stationary physiological noise likely
arises from the complex interplay within the autonomic ner-
vous system24 - cardiovascular dynamics exhibit inherent non-
linearity and are influenced by physiological randomness.
Neurotransmitters like norepinephrine, released by the sym-
pathetic nervous system, and acetylcholine, released by the
parasympathetic system, along with other mediators, con-
tribute to this stochasticity11,48,49. Our findings suggest that
previous entropy-based complexity assessments of HRV se-
ries may be influenced by natural complexity changes associ-
ated with noise32.

The limitations of this study include a reduced number of
subjects and trials, as well as the theoretical challenge of de-
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termining the optimal sliding window size for more precise
noise estimation, which would mitigate the impact of tran-
sition phases between two consecutive noise powers of non-
stationary noise.

Future work will focus on applying the method to new
datasets with a larger number of trials and different patho-
physiological conditions.
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